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Stock Price Booms and Expected Capital Gains†

By Klaus Adam, Albert Marcet, and Johannes Beutel*

Investors’ subjective capital gains expectations are a key element 
explaining stock price fluctuations. Survey measures of these expec-
tations display excessive optimism (pessimism) at market peaks 
(troughs). We formally reject the hypothesis that this is compatible 
with rational expectations. We then incorporate subjective price 
beliefs with such properties into a standard asset-pricing model 
with rational agents (internal rationality). The model gives rise to 
boom-bust cycles that temporarily delink stock prices from funda-
mentals and quantitatively replicates many asset-pricing moments. 
In particular, it matches the observed strong positive correlation 
between the price dividend ratio and survey return expectations, 
which cannot be matched by rational expectations. (JEL D83, D84, 
G12, G14)

Bull-markets are born on pessimism, grow on skepticism, mature on 
optimism and die on euphoria.

—Sir John Templeton, Founder of Templeton Mutual Funds

Following the recent boom and bust cycles in a number of asset markets around the 
globe, there exists renewed interest in understanding better the forces contributing 

* Adam: Department of Economics, University of Mannheim, L7, 3-5, 68131 Mannheim, Germany, and 
CEPR (email: adam@uni-mannheim.de); Marcet: Institut d’Anàlisi Econòmica (CSIC), Universitat Autònoma 
de Barcelona, Campus Bellaterra, 08193 Barcelona, Spain, and ICREA, MOVE, Barcelona GSE, and CEPR 
(email: marcet.albert@gmail.com); Beutel: Deutsche Bundesbank, Wilhelm-Epstein-Straße 14, 60431 Frankfurt 
am Main, Germany (email: johannes.beutel@bundesbank.de). This paper replaces an earlier paper titled “Booms 
and Busts in Asset Prices” (Adam and Marcet 2010). Thanks go to Fernando Alvarez, Michele Boldrin, Chryssi 
Giannitsarou, Vivien Lewis, Morten Ravn, Ricardo Reis, Mike Woodford, conference participants at the Banque 
de France and Chicago Fed Conference on Asset Price Bubbles, ESSIM 2010 in Tarragona, 2017 AEA Meetings, 
MONFISPOL network, and seminar participants at Columbia University, University College London, London 
School of Economics, Yale University, Harvard University, Northwestern University, Stony Brook, IMF, Mitsui 
Conference at Michigan University, University of Chicago, New York University, and London Business School 
for helpful comments and suggestions. Research assistance from Jeanine Baumert, Oriol Carreras, Lena Gerko, 
Dimitry Matveev, Tongbin Zhang, and especially Sebastian Merkel is greatly appreciated. Klaus Adam thanks the 
Bank of Japan for the hospitality offered during early stages of this project. Albert Marcet acknowledges support 
from Programa de Excelencia del Banco de España, the Severo Ochoa Programme for Centres of Excellence in 
R&D (SEV-2015-0563), Plan Nacional (Ministry of Education), SGR (Generalitat de Catalunya). Klaus Adam and 
Albert Marcet acknowledge support from the European Research Council under the EU 7th Framework Programme 
(FP/2007–2013), Starting Grant Agreement 284262 (Adam), and Advanced Grant Agreement 324048 (Marcet). 
Klaus Adam and Albert Marcet thank Fondation Banque de France for its support on this project. The paper rep-
resents the authors’ personal opinions and does not necessarily reflect the views of the Deutsche Bundesbank, the 
Eurosystem, or its staff. All errors remain ours. The authors declare that they have no relevant or material financial 
interests that relate to the research described in this paper.

† Go to https://doi.org/10.1257/aer.20140205 to visit the article page for additional materials and author  
disclosure statement(s).



2353Adam et al.: Stock price booms and expected capital gainsVOL. 107 NO. 8

to the emergence of such drastic asset price movements. This paper argues that 
movements in investor optimism and pessimism, as measured by the movements in 
investors’ subjective expectations about future capital gains, are a crucial ingredient 
for understanding these fluctuations.

We present an asset-pricing model that incorporates endogenous belief dynamics 
about expected capital gains. The model gives rise to sustained stock price booms and 
busts and is consistent with the behavior of investors’ capital gains expectations, as 
measured by survey data. The presented modeling approach differs notably from the 
standard approach in the consumption-based asset-pricing literature, which proceeds 
by assuming that stock price fluctuations are fully efficient. Campbell and Cochrane 
(1999) and Bansal and Yaron (2004), for example, present models in which stock 
price fluctuations reflect the interaction of investor preferences and stochastic driv-
ing forces in a setting with optimizing investors who hold rational expectations.

We first present empirical evidence casting considerable doubt on the prevailing 
view that stock price fluctuations are efficient. Specifically, we show that the rational 
expectations (RE) hypothesis gives rise to an important counterfactual prediction 
for the behavior of investors’ return or capital gain expectations.1 This counter-
factual prediction is a model-independent implication of the RE hypothesis, but, 
as we explain below, key for understanding stock price volatility and its efficiency 
properties.

As previously noted by Fama and French (1988), the empirical behavior of asset 
prices implies that rational return expectations correlate negatively with the price 
dividend (PD) ratio. Somewhat counterintuitively, the RE hypothesis thus predicts 
that investors should be particularly pessimistic about future stock returns in the 
early part of the year 2000, when the tech stock boom and the PD ratio of the S&P 
500 reached their all-time maximum. As we document, the available survey evi-
dence implies precisely the opposite: all quantitative survey measures of investors’ 
expected return (or capital gain) available for the US economy, unambiguously and 
unanimously, correlate positively with the PD ratio. And perhaps not surprisingly, 
return expectations reached a temporary maximum rather than a minimum in the 
early part of the year 2000, i.e., precisely at the peak of the tech stock boom, a fact 
previously shown in Vissing-Jorgensen (2004).

We present formal econometric tests of the null hypothesis that the survey evi-
dence is consistent with RE and demonstrate that the hypothesis of rational return or 
capital gain expectations is overwhelmingly rejected by the data. Our tests correct 
for small sample bias, account for autocorrelations in the error structure, and are 
immune to the presence of differential information on the part of agents and to the 
presence of measurement error in survey data. An appealing feature of the tests is 
that they also provide clues about why the RE hypothesis fails: the failure arises 
because survey expectations and RE covary differently with the PD ratio, a finding 
that is useful for guiding the search for alternative and empirically more plausible 
expectations models.

The positive comovement of stock prices and survey expectations suggests that 
price fluctuations are amplified by overly optimistic beliefs at market peaks and by 

1 Since most variation in returns is due to the variation in capital gains, we tend to use both terms interchangeably. 
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overly pessimistic beliefs at market troughs. Furthermore, it suggests that inves-
tors’ capital gains expectations are influenced, at least partly, by the capital gains 
observed in the past, in line with evidence presented by Malmendier and Nagel 
(2011). Indeed, a simple adaptive updating equation captures the time series behav-
ior of the survey data and its correlation with the PD ratio very well.

Taken together, these observations motivate the construction of an asset-pricing 
model in which agents hold subjective beliefs about price outcomes. We do so using 
the framework of internal rationality (IR), developed in Adam and Marcet (2011), 
which allows us to consider maximizing investors that hold subjective price beliefs 
within an otherwise standard Lucas (1978) asset-pricing model.2 Within this frame-
work, agents optimally update beliefs using Bayes’ law.

With this modification, the Lucas model becomes quantitatively consistent with 
important aspects of the data. Using confidence intervals based on the simulated 
method of moments (SMM), we find that the model matches key moments describ-
ing the observed volatility of stock prices and the positive correlation between the 
PD ratio and subjective return expectations. This is obtained even though we use the 
simplest version of the Lucas model with time separable preferences and standard 
stochastic driving processes. The same model under RE is very far from explaining 
the data and produces, amongst other things, far too little price volatility and the 
wrong sign for the correlation between the PD ratio and investors return expectations.

The strong improvement in the model’s empirical performance arises because 
agents’ attempts to improve their knowledge about price behavior can temporarily 
delink asset prices from their fundamental (RE) value and give rise to belief-driven 
boom and bust cycles in stock prices. This occurs because with imperfect informa-
tion about the price process, optimal behavior prescribes that agents use past capital 
gain observations to learn about the stochastic process governing the behavior of 
capital gains; this generates a feedback between capital gain expectations and real-
ized capital gains that can drive booms and busts in stock prices.

Suppose—in line with the empirical evidence—that agents become more opti-
mistic about future capital gains whenever they are positively surprised by past cap-
ital gains.3 A positive surprise for the capital gains observed in the previous period 
then increases optimism about the capital gains associated with investing in the asset 
today. If such increased optimism leads to an increase in investors’ asset demand 
and if this demand effect is sufficiently strong, then positive past surprises trigger 
further positive surprises today, and thus further increases in optimism tomorrow. As 
we show analytically, stock prices in our model do increase with capital gain opti-
mism whenever the substitution effect of increased optimism dominates the wealth 
effect of such belief changes. Asset prices in the model then display sustained price 
booms, similar to those observed in the data.

After a sequence of sustained increases, countervailing forces come into play that 
endogenously dampen the upward price momentum, eventually halt it, and cause a 
reversal. Specifically, in a situation where increased optimism about capital gains 

2 As is explained in Adam and Marcet (2011), subjective price beliefs are consistent with optimizing behavior 
in the presence of lack of common knowledge about agents’ beliefs and preferences. 

3 Such positive surprises may be triggered by fundamental shocks, e.g., a high value for realized dividend 
growth. 
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has led to a stock price boom, stock prices make up for a larger share of agents’ total 
wealth.4 As we show analytically, this causes the wealth effect to become as strong 
as (or even stronger than) the substitution effect when expectations about stock price 
appreciation are sufficiently high.5 Increases in optimism then cease to cause fur-
ther increases in stock demand and thus stock prices, so that investors’ capital gains 
expectations turn out to be too optimistic relative to the realized outcomes. This 
induces downward revision in beliefs, which gives rise to negative price momentum 
and an asset price bust.

The previous arguments show how belief dynamics can temporarily delink asset 
prices from their fundamental value. Clearly, these price dynamics are inefficient as 
they are not justified by innovations to preferences or other fundamentals.

Since we depart from RE, our model requires introducing an explicit assumption 
about agents’ price beliefs. Various elements guide this modeling choice. First, we 
choose price beliefs such that there are no black swan-like events, i.e., we insure 
that agents have contingency plans for all prices that they actually encounter along 
the equilibrium path. Second, we choose the subjective price process such that it 
gives rise to capital gain expectations that are consistent with the behavior of survey 
expectations. In particular, agents believe the average growth rate of stock prices to 
slowly drift over time, which is consistent with the presence of prolonged periods of 
price booms that are followed by price busts. Given these beliefs, equilibrium prices 
will indeed display prolonged periods of above average and below average growth.

More generally, the present paper shows how the framework of internal ratio-
nality allows studying learning about market behavior in a model of intertemporal 
decision making. It thereby improves on shortcomings present in the learning litera-
ture, where agents’ belief-updating equations and choices are often not derived from 
individual maximization and are optimal only in the limit once learning converges to 
the RE outcome. We thus provide explicit microfoundations for models of adaptive 
learning about market outcomes.

The bulk of the paper considers a representative agent model. This is motivated 
by the desire to derive results analytically and to show how a rather small deviation 
from the standard paradigm helps reconciling the model with the data. A range of 
extensions consider, amongst other things, a heterogeneous agents version and more 
elaborate subjective belief structures. These extensions allow replicating additional 
data features, e.g., the equity premium.

The remainder of the paper is structured as follows. The next section discusses 
the related literature. Section II then shows that the price dividend ratio (PD) ratio 
covaries positively with survey measures of investors’ return expectations and 
that this is incompatible with the RE hypothesis. It also shows that the time series 
of survey expectations can be captured by a fairly simple belief updating equa-
tion. Section  III introduces our asset-pricing model with subjective beliefs. As a 
benchmark, Section  IV determines the RE equilibrium. Section V introduces a 
specific model of subjective price beliefs, which relaxes agents’ prior about price 

4 This occurs because stock prices are high, but also because agents discount other income streams, e.g., wage 
income, at a higher rate. 

5 With constant relative risk aversion (CRRA) utility, this happens whenever the coefficient of relative risk 
aversion is larger than 1. 
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behavior relative to the RE equilibrium beliefs. It also derives the Bayesian updat-
ing equations characterizing the evolution of subjective beliefs over time. After 
imposing market clearing in Section VI, we present closed-form solutions for the 
PD ratio in Section VII in the special case of vanishing uncertainty. Using the ana-
lytical solution, we explain how the interaction between belief updating dynamics 
and price outcomes can endogenously generate boom and bust dynamics in asset 
prices. Section VIII estimates the fully stochastic version of the model using a mix 
of calibration and simulated method of moments estimation. It shows that the model 
successfully replicates a number of important asset-pricing moments, including the 
positive correlation between expected returns and the PD ratio. It also explains how 
the model gives rise to a high Sharpe Ratio and to a low volatility for the risk-free 
interest rate. Section IX shows that the estimated model can replicate the low fre-
quency movements in the time series of the US postwar PD ratio, as well as the 
available time series of survey data. Section X presents a number of robustness 
checks and extensions of the basic model. A conclusion briefly summarizes and 
discusses potential avenues for future research. Technical material and proofs can 
be found in the online Appendix.

I.  Related Literature

Following Shiller’s (1981) seminal observation that stock price volatility cannot 
be explained by the volatility of rational dividend expectations, the asset-pricing 
literature made considerable progress in explaining stock price behavior. Bansal 
and Yaron (2004) and Campbell and Cochrane (1999), for example, developed con-
sumption-based RE models in which price fluctuations result from large and per-
sistent swings in investors’ stochastic discount factor. Section II shows, however, 
that RE models fail to capture the behavior of investors’ return expectations. This 
strongly suggests that RE models fall short of providing a complete explanation of 
the sources of stock price volatility.

Attributing stock price fluctuations to sentiment fluctuations or issues of learning 
has long had an intuitive appeal. A substantial part of the asset-pricing literature 
introduces subjective beliefs to model investor sentiment. The standard approach 
resorts to Bayesian RE modeling, which allows for subjective beliefs about funda-
mentals, while keeping the assumption that investors know the equilibrium pricing 
function linking stock prices to fundamentals. Following early work by Timmermann 
(1993) and Barberis, Shleifer, and Vishny (1998), a substantial literature follows 
this approach. It finds that the additional stock price volatility generated from learn-
ing is overall small compared to the gap that exists relative to the data.

Recent work by Barberis et al. (2015), for example, considers a time-separable 
utility framework where some investors have rational dividend beliefs while others 
extrapolate from past dividend observations.6 While this allows one to successfully 

6 Barberis et al. (2015, p. 4) claim that agents agree on dividend behavior and that the only difference between 
rational agents and extrapolators is that the latter extrapolate future prices from past prices. Yet, as it turns out, their 
model is one where some agents extrapolate past dividends while others have rational dividend expectations and 
all agents know the equilibrium pricing function, in line with standard Bayesian RE modeling. This can be seen in 
the proof of their Proposition 1, which reverse-engineers a process for extrapolators’ dividend beliefs (ibid., equa-
tions (A16) and (A18)) that differs from the true dividend process (ibid., equation (1)). The proof of the proposition 
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replicate survey behavior, the standard deviation of the PD ratio falls one order of 
magnitude short of that observed in the data, so that there are no significant stock 
price boom and bust episodes.7

In ongoing work, Hirshleifer, Li, and Yu (2015) and Choi and Mertens (2013) 
consider Bayesian RE models with time-nonseparable preferences and investors 
who extrapolate past fundamentals. They show how extrapolation of fundamentals 
endogenously generates long-run consumption risk and thereby some increase in 
asset price volatility. Collin-Dufresne, Johannes, and Lochstoer (2016) show how 
learning about fundamentals can give rise to sizable Sharpe ratios, provided agents 
have a preference for an early resolution of uncertainty. Standard preference param-
eterizations in this class of models imply, however, that agents are willing to give 
up a big part of consumption to resolve consumption risk early (see Epstein, Farhi, 
and Strzalecki 2014).

The modeling approach pursued in the present paper differs fundamentally from 
the one discussed in the previous paragraphs. The Bayesian RE literature assumes 
that agents find it difficult to forecast fundamental shocks (agents hold subjective 
dividend beliefs), but that agents can predict perfectly price outcomes conditional 
on the history of observed fundamentals (agents know the equilibrium pricing func-
tion mapping the history of dividends into price outcomes). Assuming that agents 
know the pricing function provides agents with a substantial amount of information 
about market behavior, suggesting that it is of interest to study the effects of relaxing 
this informational assumption as we do in the current paper. Our agents entertain a 
distribution of prices for given fundamentals, which is nondegenerate and that does 
not coincide with the model at hand.8

To show that a key element for understanding stock price volatility is investor’s 
imperfect knowledge about how prices are formed, we make the distinction to the 
Bayesian RE literature as stark as possible: we assume that agents find it easy to 
predict fundamentals, i.e., assume agents hold RE about dividends, but find it diffi-
cult to predict price behavior, i.e., agents do not know the equilibrium pricing func-
tion. We show that a simple asset-pricing model can then replicate survey data and 
generate sufficient volatility for the PD ratio, including occasional boom and bust 
episodes. This is achieved in a setting with standard time-separable preferences and 
obtained because there is a much stronger propagation of economic disturbances 
when agents learn about the equilibrium pricing function: belief changes then affect 
stock price behavior and stock prices feed back into belief changes. This allows 
movements in prices and beliefs to mutually reinforce each other during price boom 

explicitly acknowledges that these subjective dividend beliefs are chosen such that extrapolators’ price beliefs 
(ibid., equations (3) and (4)) are consistent with the equilibrium pricing function: “At the same time, in order to 
compute the values of the derived parameters that govern their consumption and portfolio decisions, extrapolators 
need to be aware of the price equation (A11)” (ibid., p. 19). This implies that rational agents and extrapolators 
disagree about the dividend process but agree about the equilibrium pricing function, in line with standard Bayesian 
RE modeling. It also implies that in their setting, learning from price behavior is observationally equivalent to 
learning from dividend behavior, unlike in the setting presented in this paper. 

7 Due to the constant absolute risk aversion (CARA) utility setup, the volatility of the PD ratio also asymptot-
ically converges to zero. 

8 This is related to work by Angeletos and La’O (2013), who consider a setting in which agents are uncertain 
about the price at which they will be able to trade. They show how sentiment shocks can give rise to perfectly 
self-fulfilling fluctuations in aggregate outcomes. Sentiment shocks in their setting result from extrinsic uncertainty; 
in our setting they are triggered from intrinsic sources of uncertainty. 
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and bust phases, thereby increasing price volatility. The feedback from market out-
comes into beliefs is absent in a Bayesian RE setting.

The literature on robust control and asset prices (e.g., Cogley and Sargent 2008) 
considers settings where investors are uncertain about the process for fundamentals. 
In line with Bayesian RE modeling, this literature assumes that investors know the 
equilibrium pricing function.

The literature on adaptive learning previously considered deviations from ratio-
nal price expectations using asset-pricing models where investors learn about price 
behavior. Marcet and Sargent (1992), for example, study convergence to RE when 
agents estimate an incorrect model of stock prices by least squares learning. A range 
of papers in the adaptive learning literature argues that learning generates additional 
stock price volatility. Bullard and Duffy (2001) and Brock and Hommes (1998), for 
example, show that learning dynamics can converge to complicated attractors that 
increase asset return volatility, when the RE equilibrium is unstable.9 Lansing (2010) 
shows how near-rational bubbles can arise in a model with learning about price 
behavior. Branch and Evans (2011) present a model where agents learn about risk 
and return and show how it gives rise to bubbles and crashes. Boswijk, Hommes, and 
Manzan (2007) estimate a model with fundamentalist and chartist traders whose rel-
ative shares evolve according to an evolutionary performance criterion, showing that 
the model can generate a run-up in asset prices and subsequent mean-reversion to fun-
damental values. De Long et al. (1990) show how the pricing effects of positive feed-
back trading survives or even get amplified by the introduction of rational speculators.

The approach used in the present paper differs along several dimensions from 
the contributions mentioned in the previous paragraph. First, we compare quantita-
tively the implications of our model with the data, i.e., we match a standard set of 
asset-pricing moments capturing stock price volatility and use formal asymptotic dis-
tribution to evaluate the goodness of fit. Second, we compare the model to evidence 
obtained from survey data. Third, we present a model that derives investors’ con-
sumption and stockholding plans from properly specified microfoundations. In par-
ticular, we consider agents who solve an infinite horizon decision problem and hold 
a consistent set of beliefs, and we discuss conditions for existence and uniqueness 
of optimal plans as well as conditions insuring that the optimal plan has a recursive 
representation. The adaptive learning literature often relies on shortcuts that amount 
to introducing additional behavioral elements into decision making and postulates  
beliefs that become well specified only in the limit, if convergence to RE occurs.10

In prior work, Adam, Marcet, and Nicolini (2016) present a model in which 
investors learn about risk-adjusted price growth and show how such a model can 
quantitatively replicate a set of standard asset-pricing moments describing stock 
price volatility. While replicating stock price volatility and postulating beliefs that 
are hard to reject in the light of the existing asset price data and the outcomes gener-
ated by the model, their setup falls short of explaining survey evidence. Specifically, 
it counterfactually implies that stock return expectations are constant over time. 
Adam, Marcet, and Nicolini (2016) also solve for equilibrium prices under the 
assumption that dividend and trading income are a negligible part of total income. 

9 Stability under learning dynamics is defined in Marcet and Sargent (1989). 
10 See Adam and Marcet (2011, Section 2) for a detailed discussion. 
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We solve the model without this assumption and show that it can play an important 
role for the model solution, for example, it gives rise to an endogenous upper bound 
for equilibrium prices.11

The experimental and behavioral literature provides further evidence supporting 
the presence of subjective price beliefs. Hirota and Sunder (2007) and Asparouhova 
et al. (2016), for example, implement the Lucas asset-pricing model in the exper-
imental laboratory and document that there is excess volatility in prices that is 
unaccounted for by the rational expectations equilibrium and that likely arises from 
participants’ expectations about future prices. Furthermore, the type of learning 
employed in the present model is in line with evidence presented in Malmendier 
and Nagel (2011), who show that experienced returns affect beliefs about future 
asset returns.12

II.  Stock Prices and Stock Price Expectations

This section shows that survey expectations of future stock prices are inconsistent 
with the notion that agents hold rational stock price expectations. Indeed, our formal 
econometric tests, presented in Sections IIB and IIC, show that stock market inves-
tors display undue optimism about future stock prices when the PD ratio is high and 
undue pessimism when the PD ratio is low. Section IID then illustrates how simple 
adaptive price predictions quantitatively capture the relationship between survey 
expectations and the PD ratio.

11 In line with the approach in the Bayesian RE literature, Adam, Marcet, and Nicolini (2016) impose an exog-
enous upper bound on agents’ beliefs, a so-called projection facility, so as to insure existence of finite equilibrium 
prices. 

12 Greenwood and Nagel (2009) show that—in line with this hypothesis—young mutual fund managers dis-
played trend-chasing behavior over the tech stock boom and bust around the year 2000. 
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A. Survey Expectations and the PD Ratio

As pointed out by Vissing-Jorgensen (2004), Greenwood and Shleifer (2014), 
and Adam and Marcet (2010), survey expectations of future returns (or capital 
gains) display a positive correlation with the PD ratio, while actual returns (or cap-
ital gains) display a negative correlation.13

Online Appendix A2 documents this fact for a range of surveys and Figure  2 
illustrates it using our preferred survey, the UBS Gallup Survey, which is based 
on a representative sample of approximately 1,000 US investors who own at least 
US$10,000 in financial wealth.14 Figure 2 graphs the US PD ratio (the black line) 
together with measures of the cross-sectional average of investors’ one-year ahead 
expected real return.15 Return expectations are expressed in terms of quarterly real 
growth rates and the figure depicts two expectations measures: investors’ expec-
tations about the one year ahead stock market return, as well as their expectations 
about the one year ahead returns on their own stock portfolio. These measures behave 
very similarly over the period for which they overlap, but the latter is available 
for a longer time period. Figure 2 reveals that there is a strong positive correlation 
between the PD ratio and expected returns. The correlation between the expected 
own portfolio returns and the PD ratio is +0.70 and even higher for expected stock 
market returns (+0.79). Moreover, investors’ return expectations were highest at 
the beginning of the year 2000, which is precisely the year the PD ratio reached its 

13 A related observation is that return forecast errors implied by survey data can be predicted using the PD ratio: 
see Bacchetta, Mertens, and Van Wincoop (2009). 

14 About 40 percent of respondents own more than US$100,000 in financial wealth. As is documented in online 
Appendix A2, this subgroup does not behave differently. 

15 To be consistent with the asset-pricing model presented in later sections, we report expectations of real 
returns. The nominal return expectations from the survey have been transformed into real returns using inflation 
forecasts from the Survey of Professional Forecasters. Results are robust to using instead the Michigan Survey 
inflation forecast. 
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peak during the tech stock boom. Investors then expected annualized real returns of 
around 13 percent from stock investments, while the subsequently realized returns 
turned out to be particularly dismal. Conversely, investors were most pessimistic in 
the year 2003 when the PD ratio reached its bottom, expecting then annualized real 
returns of below 4 percent.

This evidence suggests that survey data are incompatible with rational expec-
tations and that stock prices seem to play a role in the formation of expectations 
about stock returns. Yet, evidence based on comparing two correlations can only 
be suggestive, as it is subject to several econometric shortcomings. For example, if 
investors possess information that is not observed by the econometrician, as might 
be considered likely, then the correlation between the fully rational return forecasts 
and the PD ratio will differ from the correlation between realized returns and the 
PD ratio. The same holds true if survey expectations are measured with error, as 
one can reasonably expect. Furthermore, results in Stambaugh (1999) imply that 
with the PD ratio being such a persistent process, there is considerable small sample 
bias in these correlations, given the relatively short time spans over which investor 
expectations can be tracked. Finally, a highly serially correlated predictor variable 
(PD ratio), whose innovations are correlated with the variable that is to be predicted 
(future returns), gives rise to spurious regression and thus spurious correlation prob-
lems (see Ferson, Sarkissian, and Simin 2003 and Campbell and Yogo 2006). There 
also does not exist a standard nonparametric approach allowing to correct for these 
small sample issues when comparing correlations.16 Comparisons involving cor-
relations are thus insufficient for rejecting the hypothesis that survey expectations 
are consistent with RE. To deal with these concerns, the next sections construct 
formal econometric tests that take these concerns fully into account.

B. RE Test with Small Sample Adjustments

This section develops a RE test that takes into account the concerns expressed 
in the previous section. While the present section emphasizes the derivation of ana-
lytical results, Section IIC provides further tests that rely entirely on Monte Carlo 
simulation.

Let ​​E​ t​ ​​ denote agents’ subjective expectations operator based on informa-
tion up to time ​t​ , which can differ from the rational expectations operator ​​E​t​​​. 
Let ​​R​t, t+N​​​ denote the real cumulative stock returns between period ​t​ and ​t + N​ and 
let ​​​ t​ N​  = ​ E​ t​ ​ ​R​t, t+N​​ + ​μ​ t​ N​​ denote the (potentially noisy) observation of expected 
returns, as obtained, for example, from survey data, where ​​μ​ t​ N​​ is measurement 
error.17

Let us linearly project the random variable ​​E​ t​ ​ ​R​t, t+N​​​ on ​​ ​P​t​​ __ ​D​t​​
 ​​ to define

(1)	​ ​E​ t​ ​ ​R​t, t+N​​  = ​ a​​ N​ + ​c​​ N​ ​ ​P​t​​ ___ ​D​t​​
 ​ + ​u​ t​ N​ , ​

16 Any test must take into account the joint distribution of the correlation estimates in order to make statistically 
valid statements. 

17 Since the Shiller survey reports expectations about capital gains instead of returns, ​​R​t, t+N​​​ denotes the real 
growth rate of stock prices between periods ​t​ and ​t + N​ when using the Shiller survey. 
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where

(2)	​ E(​x​t​​ ​u​ t​ N​ )  =  0, ​

for ​​x​ t​ ′ ​  = ​ (1, ​P​t​​ / ​D​t​​)​​. The operator ​E​ denotes the objective expectation for the true 
data-generating process, whatever is the process for agents’ expectations. The pro-
jection residual ​​u​ t​ N​​ captures variations in agents’ actual expectations that cannot be 
linearly attributed to the price-dividend ratio.18 It summarizes all other information 
that agents believe to be useful in predicting ​​R​t, t+N​​​.19

Due to the potential presence of measurement error, one cannot directly estimate 
equation (1), but given the observed return expectations ​​​ t​ N​​ , one can write the fol-
lowing regression equation:

(3)	​ ​​ t​ N​  = ​ a​​ N​ + ​c​​ N​ ​ ​P​t​​ ___ ​D​t​​
 ​ + ​u​ t​ N​ + ​μ​ t​ N​ .​

Assuming that the measurement error ​​μ​ t​ N​​ is orthogonal to the current PD ratio,20 we 
have the orthogonality condition

(4)	​ E​[​x​t​​ ( ​u​ t​ N​ + ​μ​ t​ N​ )]​  =  0.​

Let ​​​c ˆ ​​ T​ N​​ denote the ordinary least squares (OLS) estimator of ​​c​​ N​​ in equation (3), 
given a sample of length ​T​.21

We can specify an additional regression equation like equation (3), but with 
actual returns as dependent variable,

(5)	​ ​R​t, t+N​​  = ​ a​​ N​ + ​c​​ N​ ​ ​P​t​​ ___ ​D​t​​
 ​ + ​u​ t​ N​ , ​

where

(6)	​ E​[​x​t​​ ​u​ t​ N​]​  =  0.​

Let ​​​c ˆ ​​ T​ N​​ denote the OLS estimate of ​​c​​ N​​ with ​T​ observations.
The reader can probably guess that the regression estimates are useful here 

because under the hypothesis of RE we have ​​c​​ N​ = ​c​​ N​​ , so that the estimates 
​​​c ˆ ​​ T​ N​​ and ​​​c ˆ ​​ T​ N​​ are both consistent estimates of the same parameter, letting the prediction 
error ​​ε​ t​ 

N​​  = ​​ R​t,  t+N​​​ − ​​​E​t​​​ (​​R​t, t+N​​​  ), where ​​E​t​​​ is taken with respect to the objective dis-
tribution and the information available to investors at t, we have ​​u​​ N​  = ​ u​​ N​ +  ​ε​ t​ N​​. 
This gives rise to the following test.

18 The residual ​​u​ t​ N​​ is likely to be correlated with current and past observables (other than the PD ratio) and thus 
serially correlated. 

19 The projection in equation (1) and the error are well defined as long as agents’ expectations ​​E​ t​ ​ ​R​t, t+N​​​ 
and ​​P​t​​ / ​D​t​​​ are stationary and have bounded second moments. 

20 We allow ​​μ​ t​ N​​ to be serially correlated and correlated with equilibrium variables other than ​P​D​t​​​. 
21 Although the residuals ​​u​ t​ N​​ and the measurement errors ​​μ​ t​ N​​ are likely to be serially correlated, the OLS esti-

mate is consistent. 
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Proposition 1: Assume the process ​​{​R​t, t+N​​ , ​​ t​ N​ , ​P​t​​ / ​D​t​​}​​ is station-
ary and ergodic, all moments are such that asymptotic distributions exist,22 ​
E( ​μ​t​​ ) = E( ​μ​t​​ ​P​t​​ / ​D​t​​ ) = 0​ , and ​​P​t​​ / ​D​t​​​ is part of agents’ time ​t​ information set. Then

	 (i)	 Under the null hypothesis of rational expectations

      (7)	​ ​√ 
__
 T ​ ​ ​​c ˆ ​​ T​ N​ − ​​c ˆ ​​ T​ N​

 ______ ​​σ ˆ ​​c−c​​
 ​   →  N(0, 1 )  in distribution as T  →  ∞, ​

		  where ​​​σ ˆ ​​ c−c​ 2 ​​  is a consistent estimate of var(​​​c ˆ ​​​ N​ − ​​c ˆ ​​​ N​ )​.23

	 (ii)	 Suppose in addition that

      (8)	​ ​ ​P​t​​ ___ ​D​t​​
 ​  = ​  ‾ PD ​(1 − ρ )  + ρ ​ ​P​t−1​​ ____ ​D​t−1​​

 ​ + ​ε​ t​ PD​​

		  for ​ρ  ∈  (−1, 1)​ , where (​​u​ t​ N​ + ​μ​ t​ N​, ​u​ t​ N​ , ​ε​ t+1​ PD ​ )​ is normally distributed, i.i.d., 
with mean 0, and ​E( ​μ​ t​ N​​​​ε​ t+1​ PD ​ ) = 0​. Under the null hypothesis of rational 
expectations, the small sample bias of ​​​c ˆ ​​ T​ N​ − ​​c ˆ ​​ T​ N​​ in the test-statistic (7) is

      (9)	​ E( ​​c ˆ ​​ T​ N​ − ​​c ˆ ​​ T​ N​ )  = ​  cov ( ​ε​ t+1​ PD ​ , ​ε​ t​ N​ )  ___________  
var( ​ε​ t​ PD​ )

 ​  E( ​​ρ ˆ ​​T​​ − ρ), ​

		  where ​E(​​ρ ˆ ​​T​​ − ρ)​ is the small sample bias in the estimation of ​ρ​ for a sample 
of length ​T​.

The proof of Proposition 1 can be found in online Appendix A3. It treats equa-
tions (3)–(6) as a seemingly unrelated regression system and uses the fact that under 
rational expectations one has ​​c​​ N​  = ​ c​​ N​​. Part (ii) of the proposition follows from 
results in Stambaugh (1999).

Part (i) of Proposition 1 uses minimal assumptions to obtain an asymptotically 
valid result. Essentially, all that is needed is stationarity of the observables and 
orthogonality of the measurement error. The test is asymptotically robust to serial 
correlation and heteroskedasticity of the error terms.

Part (ii) of Proposition 1 deals with small sample bias in the test statistic. Since ​
ρ​ is close to 1, we have ​E( ​​ρ ˆ ​​T​​ − ρ) < 0​; and since future stock price increases are 
likely to be correlated with future surprises to returns, i.e., ​cov ( ​ε​ t+1​ PD ​, ​ε​ t​ N​ )  >  0​ , we 
tend to get ​E( ​​c ˆ ​​ T​ N​ − ​​c ˆ ​​ T​ N​ )  <  0​ in small samples, even if in fact ​​c​​ N​  = ​ c​​ N​​.

22 More precisely, we assume: (i) bounded second moments of (​​R​t, t+N​​ , ​​ t​ N​ , ​P​t​​ / ​D​t​​ )​ ; (ii) ​var( ​P​t​​ / ​D​t​​ )  >  0;​ and 

​​S​w​​  = ​   ∑ 
k=−∞

​ 
∞

 ​​  E​(​[​
​u​ t​ N​ + ​μ​ t​ N​​ 
​u​ t​ N​ + ​ε​ t​ N​

 ​]​ ​[​​u​ t−k​ N ​  + ​μ​t−k​​​ 
​u​ t−k​ N ​  + ​ε​ t−k​ N ​

 ​]​
′
 ⊗ ​x​t​​ ​x​ t−k​ ′ ​ )​  <  ∞.​ 

23 Equation (A5) in the proof of Proposition 1 provides an explicit expression for a consistent variance estimator. 
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The fraction on the right-hand side of the bias expression in equation (9) can be 
estimated from observables using the calculated errors from equations (3), (5), and 
(8) and the fact that under the null

	​ cov (​ε​ t+1​ PD ​, ​ε​ t​ N​ )  =  cov (​ε​ t+1​ PD ​ , ​u​ t​ N​ ) − cov (​ε​ t+1​ PD ​ , ​u​ t​ N​ + ​μ​ t​ N​ ).​

The bias ​E(​​ρ ˆ ​​T​​ − ρ)​ in equation (9) is approximately given by ​E( ​​ρ ˆ ​​T​​ − ρ)  
≃  − ​ 1 + 3ρ ____ T ​ ​  (see Marriott and Pope 1954). Since the true bias is a nonlinear function 
of ​ρ​ and the analytical linear approximation less precise in the relevant range of ​ρ​ 
close to 1,24 we compute the bias ​E(​​ρ ˆ ​​T​​ − ρ)​ using Monte Carlo integration.25

Interestingly, our RE test ​​c​​ N​  = ​ c​​ N​​ is less prone to small sample bias than tests 
for the significance of the individual regression coefficients (​​c​​ N​ = 0​ and ​​c​​ N​ = 0​). 
This follows from the proof of Proposition 1, which shows that

	​ E( ​​c ˆ ​​ T​ N​ − ​c​​ N​ )  =  E( ​​c ˆ ​​ T​ N​ − ​c​​ N​ ) + ​ cov ( ​ε​ t+1​ PD ​ , ​ε​ t​ N​ )  ___________  
var( ​ε​ t​ PD​ )

 ​  E( ​​ρ ˆ ​​T​​ − ρ ) .​

The previous equation implies that the small sample bias present in the individual 
estimate of ​​c​​ N​​ , i.e., ​E( ​​c ˆ ​​ T​ N​ − ​c​​ N​ )​  cancels in the numerator of test statistic (7) when 
testing for ​​c​​ N​  = ​ c​​ N​​.

The test outcomes associated with Proposition 1 are reported in Table 1A.26 
The table reports the bias-corrected point estimates of ​​c​​ N​ ​ and ​​c​​ N​​ , as well as the 
bias-corrected p-values for the test based on Proposition 1.27 We use the UBS, CFO, 
and Shiller surveys and consider various ways for extracting expectations from these 
surveys.28 The point estimates always satisfy ​​​c ˆ ​​​ N​  >  0​ and ​​​c ˆ ​​​ N​  <  0​. The difference 
between the two estimates is statistically significant at the 1 percent level in all 
cases, except when using the survey median from the CFO survey, where p-values 
are around 3 to 5 percent.29

Overall, the test results in Table 1A provide strong evidence against the notion 
that survey expectations are compatible with rational expectations. Table 1A also 
shows that agents are overly optimistic when the ​PD​ ratio is high and overly pessi-
mistic when the ​PD​ ratio is low. This suggests that current prices have an excessive 
role in influencing current return expectations. Clearly, if the asset price and survey 
data were generated by a rational expectations model—say, the models of Campbell 
and Cochrane (1999) or Bansal and Yaron (2004)—the tests in Table 1A would have 
been accepted.

24 See, for instance, MacKinnon and Smith (1998, Figure 1). 
25 Given the estimated values of ​​ ‾ PD ​, ρ, ​σ​ ​ε​​ PD​​ 

2 ​ ​ we simulate 10,000 realizations of ​PD​ of length ​T​ , compute ​​ρ ˆ ​​ for 
each realization, average over realizations to obtain an approximation for ​E( ​​ρ ˆ ​​T​​ )​, and compute the bias correction 
accordingly. 

26 We used 4 lags for Newey West estimator and we checked that results are robust to increasing the lag length 
up to 12 lags. For each considered survey, we use data on actual returns (or excess returns, or price growth) for the 
same time period for which survey data are available when computing the p-values. 

27 The p-values are computed using the bias corrected test statistic ​​√ 
__
 T ​ ​ ​​c ˆ ​​ T​ N​ − ​​c ˆ ​​ T​ N​ − E( ​​c ˆ ​​ T​ N​ − ​​c ˆ ​​ T​ N​ )  _____________ ​​σ ˆ ​​c−c​​

 ​ ​. 
28 See online Appendix A1 for information on the data sources. 
29 We conjecture that the CFO provides less significant results because the sample starts in 2000:III, and thus 

does not include the upswing of the tech boom period, unlike the UBS sample. As a result, the CFO sample period 
displays less mean reversion in prices, which accounts for the fact that the estimates of ​c​ are less negative and less 
significant. 
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C. Additional Small Sample Adjustments

The closed-form expressions for the small sample bias derived in the previous 
section are useful for understanding the nature of the bias. At the same time, they fall 
short of completely addressing small sample issues. In particular, the result stated in 
Proposition 1(ii) relies on assuming that the regression residuals ​​u​ t​ N​ + ​μ​ t​ N​​ and ​​u​ t​ N​​ in 
equations (3) and (5) are i.i.d. Yet, this is unlikely to hold in our application.

Consider first the residual ​​u​ t​ N​​. Under the null hypothesis of RE, we 
have ​​u​ t​ N​  = ​ u​ t​ N​ + ​ε​ t​ N​​ , where ​​ε​ t​ N​  ≡ ​ R​t, t+N​​ − ​E​t​​ ​R​t, t+N​​​ is a prediction error from the 
true data-generating process. For short prediction horizons (​N  =  1​), ​​ε​ t​ N​​ is indeed 
serially uncorrelated, but for longer horizons (​N  >  1​), the residuals ​​ε​ t​ N​​ denote fore-
cast errors for overlapping prediction horizons. Since we use quarterly data and 
prediction horizons between one and ten years, serial correlation of ​​u​ t​ N​​ is a relevant 
concern.

Next, consider the residual ​​u​ t​ N​​. Under the null hypothesis, it captures information 
that agents use to predict future returns over and above the PD ratio. The variables 
capturing such information can be expected to be themselves serially correlated.30 

30 For example, in a model with capital accumulation, ​​u​ t​ N​​ is a function of the capital stock, which is highly 
serially correlated. 

Table 1A—Rational Expectations Test, ​​H​0​​​: c = c 
(Stock Returns, Small Sample Bias Correction from Proposition 1)

Survey average Survey median

​​c ˆ ​​ · 103 ​​c ˆ ​​ · 103
bias · 103

−E(​​c ˆ ​​ − ​​c ˆ ​​)
p-value

​​H​0​​​: c = c ​​c ˆ ​​ · 103 ​​c ˆ ​​ · 103
bias · 103

−E(​​c ˆ ​​ − ​​c ˆ ​​)
p-value

​​H​0​​​: c = c

Panel A. S&P 500, real returns
UBS, >100k, 1 yr, SPF 0.58 −2.46 0.432 0.0000 0.48 −2.49 0.415 0.0000
UBS, >100k, 1 yr, Michigan 0.57 −2.46 0.452 0.0000 0.47 −2.49 0.413 0.0000

UBS, all, 1 yr, SPF 0.57 −2.46 0.424 0.0000 0.49 −2.49 0.401 0.0000
UBS, all, 1 yr, Michigan 0.56 −2.46 0.442 0.0000 0.48 −2.49 0.433 0.0000

CFO, 1 yr, SPF 0.20 −1.67 0.222 0.0011 0.25 −1.37 0.325 0.0471
CFO, 1 yr, Michigan 0.27 −1.67 0.200 0.0006 0.34 −1.37 0.313 0.0362

Panel B. Dow Jones, real price growth

Shiller, 1 yr, SPF 0.26 −1.22 0.235 0.0011 0.24 −1.20 0.265 0.0015
Shiller, 1 yr, Michigan 0.33 −1.22 0.232 0.0006 0.31 −1.20 0.238 0.0007

Shiller, 10 yrs, SPF 4.73 −7.25 −1.367 0.0000 6.15 −7.24 −1.440 0.0000
Shiller, 10 yrs, Michigan 4.24 −7.25 −1.423 0.0000 5.65 −7.24 −1.462 0.0000

Notes: The table reports p-values for the rational expectations test from Section IIB for different survey sources and 
different ways to extract expectations from the surveys. Estimates and p-values are bias corrected as described in 
Section IIB and Proposition 1. ​​c ˆ ​​ is the estimate of ​​c​​ N​​ in equation (3) and ​​c ˆ ​​ the estimate of ​​c​​ N​​ in equation (5). The 
column labeled Bias reports the small sample bias of ​​c ˆ ​​ − ​​c ˆ ​​ as implied by Proposition 1. The UBS and CFO surveys 
report return expectations for the S&P 500, the Shiller surveys report capital gain expectations for the Dow Jones 
Index. In the regressions, ​​R​t,t+N​​​ denotes returns, except for the Shiller survey, where it denotes capital gains. The 
columns labeled survey average compute expectations using the cross-sectional average of return survey expecta-
tions; the columns labeled survey median use the median survey expectation. In the first column, SPF and Michigan 
refer to different approaches to compute real expected returns, with the former using inflation expectations from the 
Survey of Professional Forecasters (SPF) and the latter using the Michigan survey; 1 yr and 10 yr refer to forecast 
horizons of 1 and 10 years, respectively; UBS, >100k indicates a restricted sample using only UBS survey partici-
pants with more than US$100,000 in financial wealth; UBS, all indicates the use of all survey participants.
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Indeed, once we take into account serial correlation below, we find a quarterly per-
sistence for ​​u​ t​ N​​ between 0.77 and 0.93.

An additional concern with the small sample result in Proposition 1 is that the 
variance ​​​σ ˆ ​​c−c​​​ is usually underestimated in regressions involving highly serially 
correlated variables. Ferson, Sarkissian, and Simin (2003) and Campbell and Yogo 
(2006) show that this leads to spurious regression problems that cause the null 
hypothesis to be rejected too often in the kind of regressions we are dealing with.

To address these issues, this section constructs p-values using a Monte Carlo pro-
cedure to find the actual distribution of the statistic ​​√ 

__
 T ​​(​​c ˆ ​​​ N​ − ​​c ˆ ​​​ N​)​/ ​​σ ˆ ​​c−c​​​. The aim is 

to build a model for returns that is as close as possible to the one used in Stambaugh 
(1999), but that allows for serial correlation of the error terms. To this end, we con-
sider in addition to equation (8) an equation for returns of the form

(10)	​ ​R​t, t+N​​  = ​ A​​ N​ + ​C​​ N​ ​ ​P​t​​ ___ ​D​t​​
 ​ + ​U​ t+N​ N ​  , ​

with given constants ​​A​​ N​​ and ​​C​​ N​​. We allow ​​U​ t​ N​​ to be serially correlated by specifying 
it as an AR(1) process. Since the innovations ​​ε​ t​ PD​​ to the PD ratio in equation (8) are 
likely also a key component of the innovation to returns, we allow the innovations 
to ​​U​ t​ N​​ to be correlated with ​​ε​ t​ PD​​ and consider

(11)	​ ​U​ t​ N​  =  χ ​U​ t−1​ N ​  + ​η​t​​ + λ ​ε​ t​ PD​​

for ​​η​t​​  ∼  N(0, ​σ​ η​ 2​ ),​ independent of ​​ε​ j​ PD​​ at all dates ​j​ , and for given constants ​χ​ and ​
λ​ satisfying ​​|χ|​  < 1​.

Notice that equation (10) is not a special case of equation (5) in Section IIB. The 
reason is that ​​U​ t+N​ N ​ ​ is correlated with ​​ε​ t+N−j​ PD ​ ​ for ​j  ≥  0​ and thus correlated with ​P​D​t​​​ :

	​ E( ​U​ t+N​ N ​   P​D​t​​ )  = ​ 
​​(χ)​​​ N​ λ ​σ​ ​ε​​ PD​​ 

2 ​
 ________ 

1 − ​​(χρ)​​​ 2​
 ​ .​

As a result, the regression coefficients ​​(​a​​ N​ , ​c​​ N​)​​ in equation (5) do not sat-
isfy ​​a​​ N​  = ​ A​​ N​,​ ​​c​​ N​  = ​ C​​ N​ ,​ whenever ​χλ  ≠  0​. It would thus be incorrect to plug 
our estimates of ​​a​​ N​ ,​ ​​c​​ N​​ into equation (10) for the purpose of running the Monte 
Carlo simulations.

To estimate the parameters in equations (10) and (11), we proceed as follows. We 
lag equation (10) by one period, multiply by ​χ​ and subtract it from equation (10). 
This delivers

(12) ​ ​R​t, t+N​​ = ​A​​ N​ (1 − χ ) + χ ​R​t−1, t+N−1​​ + ​C​​ N​ ​ ​P​t​​ ___ ​D​t​​
 ​ − χ ​C​​ N​ ​ ​P​t−1​​ ____ ​D​t−1​​

 ​ + λ ​ε​ t+N​ PD ​ + ​η​t+N​​ , ​

which can be estimated using nonlinear least squares and the observed explana-
tory variables ​​(​R​t−1, t+N−1​​ , ​ 

​P​t​​ __ ​D​t​​
 ​ , ​ ​P​t−1​​ ___ ​D​t−1​​

 ​ , ​​ε ˆ ​​ t+N​ PD ​ )​​ , because these explanatory variables are 
orthogonal to ​​η​t+N​​​. We thus have consistent and efficient estimates for ​χ​ , ​λ, ​σ​ η​ 2​ , ​A​​ N​,​ 
and ​​C​​ N​​. We plug these estimates into equations (10) and (11) to simulate ​​R​t, t+N​​ .​
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To compute expected returns under the null hypothesis of RE, we compute the 
true expectation of returns, which are given by

	​ ​E​t​​​(​R​t, t+N​​)​  = ​ A​​ N​ + ​C​​ N​ ​ ​P​t​​ ___ ​D​t​​
 ​ + ​​(χ)​​​ N​ ​U​ t​ N​ .​

Using these results, we can simulate all the variables involved in equations (3) and 
(5), compute the statistic ​​√ 

__
 T ​​(​​c ˆ ​​​ N​ − ​​c ˆ ​​​ N​)​/ ​​σ ˆ ​​c−c​​​ for each simulation and study its small 

sample distribution, using the sample sizes of the considered survey source. We then 
compute the probability that ​​√ 

__
 T ​​(​​c ˆ ​​​ N​ − ​​c ˆ ​​​ N​)​/ ​​σ ˆ ​​c−c​​​ in the Monte Carlo simulations is 

smaller than the corresponding value we find for the data. This provides a p-value 
for the one-sided test of RE, when the alternative hypothesis is ​​c​​ N​  > ​ c​​ N​​ , i.e., that 
survey returns respond more strongly to the PD ratio than actual returns.

Table 1B reports the outcomes of this procedure. The second column in the table 
reports the estimated value for ​χ​. It shows that the residuals ​​U​ t​ N​​ in equation (11) are 
indeed serially correlated. We find that this leads to considerable spurious regression 
problems, as the standard deviation of the test statistic ​​√ 

__
 T ​​(​​c ˆ ​​​ N​ − ​​c ˆ ​​​ N​)​/ ​​σ ˆ ​​c−c​​​ is indeed 

around 2 to 3 times larger than its asymptotic value of 1.
Table 1B also reports the bias corrected estimates ​​​c ˆ ​​​ N​​ and ​​​c ˆ ​​​ N​​.31 Compared to the 

results in Table 1A, the estimates for ​​​c ˆ ​​​ N​​ are considerably less negative; the ones for 
the CFO and Shiller 1 year sample even become positive. Yet, the bias-corrected 
estimates for ​​​c ˆ ​​​ N​​ in Table 1B also become more positive when compared to the ones 
reported in Table 1A. Therefore, despite the spurious regression problems, which 
cause an increase in the true variance of the test statistic, the RE hypothesis is 

31 The point estimates correct for small sample bias using the mean of the estimator found in the Monte Carlo 
simulations with serially correlated errors and using the fact that ​​c​​ N​  = ​ C​​ N​ + ​​(χ)​​​ N​ λ(1 − ​ρ​​ 2​ ) / (1 − ​​(χρ)​​​ 2​ )​. 

Table 1B—Rational Expectations Test, ​​H​0​​​: c ≤ c 
(Stock Returns, One-Sided Test, Small Sample Corrections with Serially Correlated Errors  

and Nonlinear Least Squares Estimates from Section IIC)

Survey average Survey median

χ ​​c ˆ ​​ · 103 ​​c ˆ ​​ · 103
bias · 103

−E(​​c ˆ ​​ − ​​c ˆ ​​)
p-value

​​H​0​​​: c ≤ c ​​c ˆ ​​ · 103 ​​c ˆ ​​ · 103
bias · 103

−E(​​c ˆ ​​ − ​​c ˆ ​​)
p-value

​​H​0​​​: c ≤ c

Panel A. S&P 500, real returns

UBS*, >100k, 1 yr, SPF 0.82 2.80 −0.64 0.054 0.014 2.68 −0.62 0.062 0.013
UBS*, >100k, 1 yr, Michigan 0.82 2.79 −0.64 0.054 0.016 2.67 −0.62 0.071 0.014

UBS*, all, 1 yr, SPF 0.82 2.78 −0.64 0.072 0.013 2.69 −0.62 0.063 0.013
UBS*, all, 1 yr, Michigan 0.82 2.77 −0.64 0.072 0.015 2.68 −0.62 0.055 0.014

CFO, 1 yr, SPF 0.94 5.83 3.19 −0.568 0.046 6.59 4.07 −0.550 0.111
CFO, 1 yr, Michigan 0.94 5.90 3.19 −0.568 0.044 6.67 4.07 −0.520 0.107

Panel B. Dow Jones, real price growth

Shiller, 1 yr, SPF 0.92 4.68 2.34 −0.621 0.020 4.68 2.38 −0.627 0.018
Shiller, 1 yr, Michigan 0.92 4.74 2.34 −0.624 0.016 4.74 2.38 −0.627 0.017

Shiller, 10 yrs, SPF 0.76 8.07 −2.65 −0.130 0.016 9.45 −2.66 −0.200 0.014
Shiller, 10 yrs, Michigan 0.76 7.48 −2.65 0.200 0.023 8.85 −2.66 −0.200 0.019

Notes: The column labeled χ reports the estimated persistence parameter of the return residuals ​​U​ t​ 
N​​ in equa

tion (11). See the notes to Table 1A for further information.
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soundly rejected.32 The level of the rejection is now considerably lower than the one 
reported in Table 1A, but still highly significant. Since the involved sample lengths 
are not very large, this is a remarkable result.

Table 1C repeats the analysis when letting ​​R​t, t+N​​​ denote excess stock returns rather 
than stock returns.33 We construct excess return expectations following Bacchetta, 
Mertens, and Van Wincoop (2009), i.e., we assume that the ​N​ period ahead risk-free 
interest rate is part of agents’ information set and subtract it from the (expected) stock 
return.34 We find that the strength of the rejection of RE is then somewhat lower 
when compared to Table 1B. Still, for most survey sources one obtains p-values near 
or below 5 percent. The somewhat lower p-values show that the approach based on 
plain stock returns, as reported in Table 1B, offers a slightly more powerful test of 
the RE hypothesis. Interestingly, this is in line with the main hypothesis of this paper, 
namely, that agents form their expectations about stock prices by extrapolating the 
behavior of past price growth. Under this hypothesis, subtracting the risk-free interest 
rate adds noise to the independent variables on the LHS of regression equations (3) 
and (5), which is consistent with the observed decrease in the significance levels.

D. How Models of Learning May Help

This section illustrates that a simple adaptive approach to forecasting stock prices 
is a promising alternative to explain the joint behavior of survey expectations and 
stock price data.

32 As in Table 1A, the rejection is less strong for the CFO survey, especially when using the survey median. See 
footnote 29 for a discussion for the potential reasons behind this result. 

33 For the Shiller survey, which reports price growth expectations, ​​R​t, t+N​​​ now denotes excess prices growth. 
34 Following Bacchetta, Mertens, and Van Wincoop (2009), we use the constant maturity interest rates available 

from the FRED database at the St. Louis Federal Reserve Bank. 

Table 1C—Rational Expectations Test, ​​H​0​​​: c ≤ c 
(Excess Stock Returns, One-Sided Test, Small Sample Corrections with Serially Correlated Errors  

and Nonlinear Least Squares Estimates from Section IIC)

Survey average Survey median

χ ​​c ˆ ​​ · 103 ​​c ˆ ​​ · 103
bias · 103

−E(​​c ˆ ​​ − ​​c ˆ ​​)
p-value

​​H​0​​​: c ≤ c ​​c ˆ ​​ · 103 ​​c ˆ ​​ · 103
bias · 103

−E(​​c ˆ ​​ − ​​c ˆ ​​)
p-value

​​H​0​​​: c ≤ c

Panel A. S&P 500, real returns

UBS, >100k, 1 yr, SPF 0.77 2.00 −1.11 0.153 0.051 1.89 −1.10 0.154 0.058
UBS, >100k, 1 yr, Michigan 0.77 2.00 −1.11 0.157 0.056 1.89 −1.10 0.158 0.054

UBS, all, 1 yr, SPF 0.77 1.98 −1.11 0.161 0.056 1.90 −1.10 0.154 0.057
UBS, all, 1 yr, Michigan 0.77 1.98 −1.11 0.154 0.054 1.90 −1.10 0.160 0.062

CFO, 1 yr, SPF 0.93 5.58 3.00 −0.532 0.067 6.44 4.12 −0.517 0.155
CFO, 1 yr, Michigan 0.93 5.59 3.00 −0.540 0.065 6.45 4.12 −0.522 0.151

Panel B. Dow Jones, real price growth

Shiller, 1 yr, SPF 0.91 4.01 1.85 −0.562 0.028 4.01 1.84 −0.548 0.028
Shiller, 1 yr, Michigan 0.91 4.00 1.85 −0.547 0.030 4.01 1.84 −0.540 0.032

Shiller, 10 yrs, SPF 0.78 6.30 −5.16 0.151 0.030 7.68 −5.15 0.175 0.023
Shiller, 10 yrs, Michigan 0.78 6.14 −5.16 0.383 0.033 7.52 −5.15 −0.214 0.026

Notes: The column labeled χ reports the estimated persistence parameter of the return residuals ​​U​ t​ 
N​​ in equa

tion (11). See the notes to Table 1A for further information.



2369Adam et al.: Stock price booms and expected capital gainsVOL. 107 NO. 8

Figure 2 shows that the peaks and troughs of the PD ratio are located very closely 
to the peaks and troughs of investors’ return expectations. This suggests that agents 
become optimistic about future capital gains whenever they have observed high cap-
ital gains in the past. Such behavior can be captured by models where agents’ expec-
tations are influenced by past experience, prompting us to temporarily explore the 
assumption that the log of agents’ subjective conditional capital gain expectations ​
ln ​​E ̃ ​​t​​​[​P​t+1​​/​P​t​​]​​ evolves according to the following adaptive prediction model:

(13)	​ ln ​​E ̃ ​​t​​​[​P​t+1​​/​P​t​​]​  =  (1 − g)  ln ​​E ̃ ​​t−1​​​[​P​t​​/​P​t−1​​]​ + g ln ​P​t−1​​/​P​t−2​​ , ​

where ​g  >  0​ indicates how strongly capital gain expectations are updated in the 
direction of past price growth observations. While equation (13) may appear ad hoc, 
we show in Section V how a very similar equation can be derived from Bayesian 
belief updating in a setting where agents estimate the persistent component of price 
growth from the data. Note that equation (13) incorporates price growth observa-
tions only with a lag, in line with the theoretical model that we consider later on.

One can feed into equation (13) the historical price growth data of the S&P 500 
over the postwar period. Together with an assumption about capital gain expecta-
tions at the start of the sample, this delivers a time series of implied capital gain 
expectations ​ln ​​E ̃ ​​t​​​[​P​t+1​​/​P​t​​]​​ that can be compared to the expectations from the UBS 
survey.35 Setting the unobserved initial price growth expectations in 1946:I equal 
to ​0 percent​ , Figure 3 reports the outcome of this procedure, when estimating the 
gain parameter ​g​ using nonlinear least squares to minimize the distance between the 
expectations implied by equation (13) and the observed survey expectations.36 The 
resulting point estimate is given by ​g  =  0.0264​ and has a standard error equal to ​
0.00168​. Figure 3 shows that the adaptive prediction model captures the behavior 
of UBS expectations extremely well: the correlation between the two series is equal 
to +0.91.

There also exists a strong positive relationship between the PD ratio and the 
capital gains expectations implied by equation (13). Figure 4 documents this rela-
tionship for the entire postwar period by plotting the joint distribution of the capital 
gains expectations (as implied by equation (13)) and the PD ratio in the data.37 
When regressing the PD ratio on a constant and the expectations of the adaptive 
prediction model, one obtains an ​R ​ ​​ 2​​ coefficient of 0.43; using also the square of the 
expectations, the ​R ​ ​​ 2​​ rises further to 0.48.38

Interestingly, the relationship between implied price growth expectations and the 
PD ratio depicted in Figure 4 seems to have shifted upward after the year 2000, as 
indicated by the squared icons in the figure. Indeed running the previous regressions 
on the linear and squared expectations separately before and after the year 2000, one 

35 We transform the UBS survey measures of return expectations into a measure of price growth expectations 

using the identity ​​R​t+1​​  = ​  ​P​t+1​​ ___ ​P​t​​
 ​ + ​ ​D​t+1​​ ___ ​P​t​​

 ​   = ​  ​P​t+1​​ ___ ​P​t​​
 ​ + ​β​​ D​ ​ ​D​t​​ __ ​P​t​​

 ​​ where ​​β​​ D​​ denotes the expected quarterly growth rate of div-
idends that we set equal to the sample average of dividend growth over 1946:I–2012:I, i.e, ​​β​​ D​  =  1.0048​. Results 
regarding implied price growth are very robust toward changing ​​β​​ D​​ to alternative empirically plausible values. 

36 The figure reports log quarterly expected growth rates for real stock prices. 
37 As before, we set the unobserved initial price growth expectations in 1946:I equal to ​0 percent​. 
38 The p-values for the coefficients on the linear and squared expectations are all statistically significant at the 

1 percent level. 
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obtains much higher ​​R​​ 2​​ values, namely 0.72 and 0.77, respectively. We will come 
back to this issue in Section IX.

Overall, it emerges from Figure 4 that variations in expected capital gains 
​​​E ̃ ​​t​​​[​P​t+1​​/​P​t​​]​​ can account—in a purely statistical sense—for a large share of the vari-
ability in the postwar PD ratio. This suggests that an asset-pricing model consistent 
with equation (13), which additionally predicts a positive relationship between the 
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PD ratio and subjective expectations about future capital gains, has a good chance 
of replicating the observed positive comovement between price growth expectations 
and the PD ratio. The next sections spell out the microfoundations of such a model.

III.  A Simple Asset-Pricing Model

Consider an endowment economy populated by a unit mass of infinitely lived 
agents ​i  ∈  [ 0, 1 ]​ with time-separable preferences. Agents trade one unit of a 
stock in a competitive stock market. They earn each period an exogenous nondiv-
idend income ​​W​t​​  ≥  0​ that we refer to as wages for simplicity. Stocks deliver the 
exogenous dividend ​​D​t​​  ≥  0​. Dividend and wage incomes take the form of perish-
able consumption goods.

The Investment Problem.—Investor ​i​ solves

(14a)	​​   max​ 
​​{​C​ t​ i​≥0, ​S​ t​ i​}​​ t=0​ 

∞
 ​
​ ​ ​  ​ E​ 0​ 

​​​ i​​ ​ ∑ 
t=0

​ 
∞

 ​​ ​δ​​ t​ u​(​C​ t​ i​)​ 

	 subject to     ​S​ t​ i​ ​P​t​​ + ​C​ t​ i​  = ​ S​ t−1​ i ​​ (​P​t​​ + ​D​t​​)​ + ​W​t​​   for all t  ≥  0,

(14b)	​  S 
¯

 ​  ≤ ​ S​ t​ i​  ≤ ​ 
_
 S ​,

	​ S​ −1​ i ​   =  1, ​

where ​​C​​ i​​ denotes consumption, ​u​ the instantaneous utility of the consumer, 
assumed to be continuous, differentiable, increasing and strictly concave, ​​S​​ i​​ 
the agent’s stockholdings, which are subject to upper and lower limits such that ​
− ∞  < ​  S 

¯
 ​  <  1  < ​ 

_
 S ​  <  ∞​ , and ​P  ≥  0​ the (ex-dividend) price of the stock; ​​​​ i​​ 

denotes the agent’s subjective probability measure, which may or may not satisfy 
the rational expectations hypothesis. Further details of ​​​​ i​​ will be specified below.

To simplify the exposition, we do not explicitly consider trade in risk-free bonds 
(​​B​ t​ i​​) in problem (14), instead impose from the outset that actual bond prices and 
agents’ subjective beliefs about future bond prices are such that agents hold and plan 
to hold zero bonds at all times (​​B​ t​ i​  ≡  0​). When bonds are in zero net supply, these 
beliefs are in line with the equilibrium outcomes, when all agents are identical or 
when agents face the borrowing constraint ​​B​ t​ i​  ≥  0​.39

Dividend and Wage Income.—As is standard in the literature, we assume that div-
idends grow at a constant rate and that dividend growth innovations are unpredictable:

(15)	​ ln ​D​t​​  =  ln ​β​​ D​ + ln ​D​t−1​​ + ln ​ε​ t​ D​ , ​

where ​​β​​ D​  ≥  1​ denotes gross mean dividend growth and ​ln ​ε​ t​ D​​ an i.i.d. growth inno-
vation described further below.

39 In the latter case, the most patient agent prices the bond, i.e., letting ​​R​​ b​​ denote the gross real return on a 

one-period risk-free bond, we have ​1/​R​​ b​  = ​ sup​ i∈[0, 1]​ ​ ​  δ ​E​ t​ ​​​ i​​​u ′ ​​(​C​ t+1​ i ​ )​/​u ′ ​​(​C​ t​ i​)​​. 
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We also specify an exogenous wage income process ​​W​t​​​ , which is chosen such 
that the resulting aggregate consumption process ​​C​t​​  = ​ W​t​​ + ​D​t​​​ is empirically 
plausible. First, in line with Campbell and Cochrane (1999), we set the standard 
deviation of consumption growth to be 1/7 of the standard deviation of dividend 
growth. Second, again following these authors, we set the correlation between 
consumption and dividend growth equal to 0.2. Third, we choose a wage pro-
cess in the model such that the average consumption-dividend ratio in the model 
​(E​[​C​t​​ / ​D​t​​]​)​ equals the average ratio of personal consumption expenditure to net divi-
dend income in US postwar data and displays persistence similar to that observed in 
the data. All this can be parsimoniously achieved using the following wage income  
process:

(16)	​ ln​(1 + ​ ​W​t​​ ___ ​D​t​​
 ​)​  =  (1 − p )  ln (1 + ρ )  + p ln​(1 + ​ ​W​t−1​​ ____ ​D​t−1​​

 ​)​ + ln ​ε​ t​ W​ , ​

where ​1 + ρ​ is the average consumption-dividend ratio and ​p  ∈  [ 0, 1 )​ its quarterly 
persistence. The innovations are given by

(17)	​ ​(​ ln ​ε​ t​ D​​ 
ln ​ε​ t​ W​

​)​  ∼  iiN​(− ​ 1 __ 
2
 ​​(​ ​​σ​ D​ 2 ​​ 

​​σ​ W​ 2 ​
​)​, ​(​ 

​σ​ D​ 2 ​
​ 

​σ​DW​​
​ 

​σ​DW​​
​ 

​σ​ W​ 2 ​
 ​)​)​, ​

with ​E ​ε​ t​ D​  =  E ​ε​ t​ W​  =  1​. Given the variance of dividend growth ​​σ​ D​ 2 ​​ , which can be 
estimated from dividend data, one can use ​​σ​DW​​​ and ​​σ​ W​ 2 ​​ to impose the desired vol-
atility of consumption growth and the desired correlation with dividend growth. 
Choosing ​ρ  =  22​ , one obtains the observed average consumption-dividend ratio in 
the data and setting ​p​ to a value close to 1, one replicates the observed persistence 
of the consumption-dividend ratio in the data. Online Appendix A4 provides further 
details.

The Agents’ Underlying Probability Space.—Agents hold a set of subjective 
probability beliefs about all payoff-relevant variables that are beyond their con-
trol. In addition to fundamental variables (dividends and wages), agents perceive 
competitive stock prices as beyond their control. Therefore, the belief system 
also specifies probabilities about prices. Formally, letting ​Ω​ denote the space of 
possible realizations for infinite sequences, a typical element ​ω  ∈  Ω​ is given by 
​ω  = ​ { ​P​t​​, ​D​t​​, ​W​t​​ }​ t=0​ ∞ ​​. As usual, ​​Ω​​ t​​ then denotes the set of all possible (nonnega-
tive) price, dividend, and wage histories from period zero up to period ​t​ and ​​ω​​ t​​ its 
typical element. The underlying probability space for agents’ beliefs is then given 
by ​(Ω, ​ , ​​​​ i​ )​ with ​​ denoting the corresponding ​σ​-Algebra of Borel subsets of ​Ω​ , 
and ​​​​ i​​ a probability measure over ​(Ω,  )​.

The agents’ plans will be contingent on the history ​​ω​​ t​​ , i.e., the agent chooses 
state-contingent consumption and stockholding functions

(18)	​​  C​ t​ i​ :  ​Ω​​ t​  → ​ 핉​+​​,

(19)	​ S​ t​ i​ :  ​Ω​​ t​  → ​ [​ S 
¯

 ​, ​ 
_
 S ​]​ ​.
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The fact that ​​C​​ i​​ and ​​S​​ i​​ depend on price realizations is a consequence of optimal 
choice under uncertainty, given that agents consider prices to be exogenous random 
variables.

The previous setup is general enough to accommodate situations where agents 
learn about the stochastic processes governing the evolution of prices, dividends, 
and wages. For example, ​​​​ i​​ may arise from a stochastic process describing the evo-
lution of these variables that contains unknown parameters or hidden variables about 
which agents hold prior beliefs. The presence of unknown parameters or hidden 
variables then implies that agents update their beliefs using the observed realizations 
of prices, dividends, and wages. A particular example of this kind will be presented 
in Section V when we discuss learning about stock price behavior.

The probability space defined above is more general than that specified in a 
RE analysis of the model, where ​Ω​ contains usually only the variables that are 
exogenous to the model (in this case ​​D​t​​​ and ​​W​t​​​), but not variables that are endoge-
nous to the model and exogenous to the agent only (in this case ​​P​t​​​). In the RE lit-
erature, the Bayesian RE literature, or the literature modeling robustness concerns, 
agents are assumed to know the equilibrium pricing function ​​P​t​​ ( ​(D, W )​​ t​ )​ mapping 
histories of dividends and wages into a market price. Prices then carry only redun-
dant information and can be excluded from the probability space without loss of 
generality. The more general formulation we entertain here allows us to consider 
agents who do not know exactly which price materializes given a particular history 
of dividends and wages; our agents do have a view about the distribution of ​​P​t​​​ con-
ditional on ​​(D, W )​​ t​ ,​ but in their minds this is a proper distribution, not a point mass 
as in the RE case. Much akin to academic economists, investors in our model have 
not converged on a single asset-pricing model that associates one market price with 
a given history of exogenous fundamentals.

Parametric Utility Function.—To obtain closed-form solutions, we consider in 
the remaining part of the paper the utility function

(20)	​ u( ​C​t​​ )  = ​  ​C​ t​ 1−γ​ ____ 
1 − γ ​   with γ  >  1.​

We furthermore assume that

(21)	​ δ ​β​​ RE​  <  1, ​

where ​​β​​ RE​  = ​ ( ​β​​ D​ )​​ 1−γ​ E[ ​( ​ε​ t​ W​ )​​ −γ​ ​​(​ε​ t​ D​)​​​ 1−γ
​ ]​. This insures existence of an equilibrium 

under rational price expectations.

Existence of a Recursive Solution.—Since solving the optimization problem (14) 
for general (potentially nonrational) price beliefs is nonstandard, it is worth pointing 
out that this problem is well defined. Existence of a maximum is guaranteed by the 
stock limits (14b), which ensure that the choice of stocks is made over a compact 
set, in combination with a bounded continuous objective function (20), satisfying ​
u( ​C​t​​ )  ≤  0​. Sufficiency of first-order conditions (FOC) is guaranteed because the 
agents’ problem is concave. Given the subjective price beliefs introduced in the 
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remaining part of the paper, agents’ posterior will follow a recursive form. Using a 
standard normalization of the utility function and of the budget constraint, one can 
then guarantee that the optimal solution to (14) takes the form

(22)	​ ​S​ t​ i​  = ​ S​​ i​​(​S​ t−1​ i ​  , ​ ​P​t​​ ___ ​D​t​​
 ​ , ​ ​W​t​​ ___ ​D​t​​

 ​ , ​m​ t​ i​)​, ​

where ​​m​ t​ i​​ is a sufficient statistic characterizing the subjective distributions about 

future values of ​​(​ 
​D​t+j​​ ____ ​D​t+j−1​​

 ​ , ​ 
​P​t+j​​ ____ ​D​t+j​​

 ​ , ​ 
​W​t+j​​ ___ ​D​t+j​​

 ​)​​ for ​j  >  0​.40 See online Appendix A5 for details.

IV.  Rational Expectations Equilibrium

As a point of reference, we determine the stock price under the assumption of RE. 
For the limiting cases with an i.i.d. consumption-dividend ratio ( ​p  =  0​) or with a 
unit root in this ratio ( ​p  →  1​), one can derive simple closed-form expressions for 
the RE stock price: see online Appendix A6.

Proposition 2: If agents hold rational expectations and if price expectations 
satisfy the usual transversality condition (stated explicitly in online Appendix A6), 
then the RE equilibrium price dividend ratio is

(23)	​​  ​P​ t​ RE​ ____ ​D​t​​
 ​  =  ​   δ ​β​​ RE​ _______ 

1 − δ ​β​​ RE​
 ​	 for p  →  1,

(24)	​  ​P​ t​ RE​ ____ ​D​t​​
 ​  =  b ​  δ ​​β ̃ ​​​ 

RE
​
 _______ 

1 − δ ​​β ̃ ​​​ 
RE

​
 ​ ​​(​ε​ t​ W​)​​​ 

γ
​    for p  =  0, ​

where ​​β​​ RE​  ≡ ​ ( ​β​​ D​ )​​ 1−γ​ E[ ​( ​ε​ t​ W​ )​​ −γ​ ​​(​ε​ t​ D​)​​​ 1−γ
​ ]​ , ​b  ≡  E[ ​( ​ε​ t​ W​ )​​ −γ​ ​​(​ε​ t​ D​)​​​ 1−γ

​ ] ​e​​ γ(1−γ)​ ​σ​ D​ 2 ​ __ 2 ​​​, and 

​​​β ̃ ​​​ 
RE

​  ≡ ​ ( ​β​​ D​ )​​ 1−γ​ ​e​​ γ(γ−1)​σ​ D​ 2 ​/2​​.

The previous result shows that under RE the equilibrium PD ratio inherits the 
persistence properties of the consumption-dividend ratio process. Specifically, for ​
p  =  0​ , the PD ratio is an i.i.d. process, thus, fails to match the persistence of the PD 
ratio observed in the data. For the empirically more plausible case with a persistent 
consumption-dividend ratio ( ​p​ close to ​1​), the PD ratio also becomes persistent but 
volatility then strongly falls. In the limit ​p  →  1​ , which is the case considered in 
Campbell and Cochrane (1999), the RE PD ratio becomes a constant. Price growth 
is then given by

(25)	​ ln ​P​ t+1​ RE ​ − ln ​P​ t​ RE​  =  ln ​β​​ D​ + ln ​ε​ t+1​ D ​  , ​

40 The solution for optimal consumption plans follows from (22) and the flow budget constraint. 
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so that one-step-ahead price growth and return expectations are constant over time. 
Moreover, as long as ​p​ is bounded below ​1​ , the RE equilibrium implies a nega-
tive correlation between the PD ratio and expected future returns, contrary to what 
is evidenced by survey data.41 The RE equilibrium thus has difficulties in jointly 
matching the persistence and volatility of the PD ratio and the behavior of survey 
returns.

V.  Learning about Capital Gains and Internal Rationality

This section specifies agents’ beliefs. Once one departs from rational expectations, 
these beliefs become part of the microfoundations of the model. The benchmark 
beliefs presented in this section aim at specifying price beliefs in a parsimonious 
way such that they have a chance of replicating the behavior of survey expectations. 
We study alternative and more elaborate belief formulations in Sections XB and XC.

A. Agents’ Belief System: Benchmark Specification

To focus on the effects of learning about price behavior, we assume that agents 
know the processes (15)–(17), i.e., agents hold rational dividend and wage expecta-
tions. This sets us apart from the Bayesian RE literature, which focuses on learning 
about the behavior of exogenous fundamentals.

We also have to specify price beliefs. Our specification is motivated by the fol-
lowing observations. Under RE, price growth is approximately equal to dividend 
growth, whenever the consumption-dividend ratio is persistent ( ​p​ close to ​1​): see 
Proposition 2. Price growth in the data, however, can persistently outstrip dividend 
growth, thereby giving rise to a persistent increase in the PD ratio and an asset price 
boom (see Figure 1); conversely, it can fall persistently short of dividend growth 
and give rise to a price bust. This behavior of actual asset prices suggests that it is of 
interest to relax agents’ beliefs about price growth behavior. Indeed, in view of the 
actual behavior of asset prices, agents may entertain a more general model of price 
behavior, incorporating the possibility that the growth rate of prices persistently 
exceeds/falls short of the growth rate of dividends. To the extent that the equilib-
rium asset prices implied by these beliefs display such data-like behavior, agents’ 
beliefs will be generically validated.

In line with the previous discussion, our benchmark assumption is that agents 
perceive prices to evolve according to

(26)	​ ln ​P​t+1​​ − ln ​P​t​​  =  ln ​β​t+1​​  +ln ​ε​t+1​​ , ​

where ​​ε​t+1​​​ denotes a transitory shock to price growth and ​​β​t+1​​​ a persistent price 
growth component that drifts slowly over time according to

(27)	​ ln ​β​t+1​​  =  ln ​β​t​​ + ln ​ν​t+1​​ .​

41 Online Appendix A6 derives the general expression for the RE price for the case ​p  ∈  (0, 1)​. 
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For simplicity, we assume that agents perceive the innovations ​ln ​ε​t​​​ and ​ln ​v​t​​​ to be 
jointly normally distributed according to

(28)	​ ​(​ ln ​ε​t​​​ 
ln ​ν​t​​

​)​  ∼  iiN ​
⎛
 ⎜ 

⎝
​
⎛
 ⎜ 

⎝
​
− ​ ​σ​ ε​ 2​ __ 2 ​​ 
− ​ ​σ​ ν​ 2​ __ 2 ​

 ​
⎞
 ⎟ 

⎠
​, ​(​​σ​ ε​ 2​​  0​ 

0
​ 

​σ​ ν​ 2​
​)​

⎞
 ⎟ 

⎠
​.​

Since agents observe stock price growth, but do not separately observe the persistent 
and transitory subcomponents driving it, the previous setup defines a filtering prob-
lem in which agents need to decompose observed price growth into its persistent and 
transitory elements, so as to forecast optimally.42

The presented belief setup has a number of appealing features. First, it allows 
capturing the fact that stock price growth displays large transitory fluctuations by 
imposing ​​σ​ ν​ 2​  << ​ σ​ ε​ 2​​. In the limiting case where ​​σ​ ν​ 2​​ is close to 0, the persistent 
price growth component behaves almost like a constant, as in the RE solution with ​
p  →  1.​ The subjective price beliefs specified above can thus be interpreted as a 
small deviation from RE equilibrium beliefs. Second, the benchmark setup can cap-
ture periods with sustained increases in the PD ratio (​​β​t+1​​  > ​ β​​ D​ )​ and sustained 
decreases (​​β​t+1​​  < ​ β​​ D​​  ), in line with the behavior of the PD ratio in the data. To the 
extent that the PD ratio in the model also displays such behavior, agents’ beliefs 
about the presence of a persistent price growth component will also be generically 
validated by the model outcome. Third, as we shall show in the next section, the 
belief specification implies that agents perceived price growth expectations will 
approximately evolve according to equation (13), which captures the time series 
behavior of survey expectations.

As with any assumption about model primitives, one can entertain other plausi-
ble alternatives. Section XB explores alternative ways to specify the belief system, 
which incorporate mean reversion in the PD ratio.

B. Efficiency of Stock Prices and Internal Rationality

Among academics there appears to exist a widespread belief that rational behav-
ior and knowledge of the fundamental processes (dividends and wages in our case) 
jointly dictate a certain process for stock prices and thus the price beliefs that agents 
can rationally entertain.43 This view stipulates that rational behavior implies knowl-
edge that current stock prices must equal a discounted sum of dividends. Individual 
rationality and rational expectations about fundamentals would then provide inves-
tors with knowledge of the equilibrium pricing function (as is assumed under RE or 
Bayesian RE), so that postulating subjective price beliefs, e.g., those specified in the 
previous section, would be inconsistent with the assumption of optimal behavior on 
the part of agents.

42 Note that we do not incorporate mean-reversion into price growth beliefs in our benchmark setting. This is for 
simplicity, as we wish to consider the most parsimonious way to include perceived booms and busts. In addition, we 
seek to determine the model-endogenous forces that lead to a reversal of boom and bust dynamics, i.e., we do not 
want to obtain reversals because they are hard-wired into beliefs. We extend the setup to one with mean reversion 
in Section XB. 

43 We often received this reaction during seminar presentations. 
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This view is correct only in special cases. Considering the case with risk-neutral 
agents, Adam and Marcet (2011) show that it is correct only if agents are homoge-
neous and do not face trading constraints. In a setting with heterogeneous risk-neutral 
agents and trading constraints, it fails to be correct. As we show below, agents in our 
model are internally rational even in the homogeneous agent case: their behavior is 
optimal given an internally consistent system of subjective beliefs about variables 
that are beyond their control, which includes prices. All that is needed is a concave 
utility function.44

To illustrate this point, consider first risk-neutral agents with rational dividend 
expectations and ignore limits to stock holdings. Forward-iteration on the agents’ 
optimality condition

(29)	​ ​u ′ ​( ​C​ t​ i​ )  =  δ ​E​ t​ ​​​ i​​​[​u ′ ​( ​C​ t+1​ i ​  ) ​ ​P​t+1​​ + ​D​t+1​​  ________ ​P​t​​
 ​ ]​ ​

and risk-neutrality deliver the present value relationship

	​ ​P​t​​  = ​ E​t​​​[​ ∑ 
i=1

​ 
T

  ​​ ​δ​​ i​ ​D​t+i​​]​ + ​δ​​ T​ ​E​ t​ ​​​ i​​​[​P​t+T​​]​,​

which is independent of the agent’s own choices. Provided agents’ price beliefs 
satisfy a standard transversality condition (​​lim​ T→∞​ ​ ​ ​ δ​​ T​ ​E​ t​ ​​​ i​​​[​P​t+T​​]​  =  0​ for all ​i​ ), each 
rational agent would conclude that there must be a degenerate joint distribution for 
prices and dividends given by

(30)	​ ​P​t​​  = ​ E​t​​​[​ ∑ 
i=1

​ 
∞

 ​​ ​δ​​ i​ ​D​t+i​​]​  a.s.​

Since the RHS of the previous equation is fully determined by dividend expecta-
tions, the beliefs about the dividend process deliver the price process compatible 
with optimal behavior. In such a setting, it would be plainly inconsistent with opti-
mal behavior to assume the subjective price beliefs (26)–(27).45

Next, consider a concave utility function ​u( · )​ satisfying standard Inada condi-
tions. Forward iteration on (29) and assuming an appropriate transversality condi-
tion then delivers

(31)	​ ​P​t​​  ​u ′ ​( ​C​t​​ )  = ​ E​ t​ ​​[ ​ ∑ 
j=1

​ 
∞

 ​​ ​δ ​​ j​  ​u ′ ​( ​C​t+j​​ )  ​D​t+j​​  ]​  a.s.​

Unlike in equation (30), the right side of the previous equation depends on the 
agent’s subjective consumption plans. From equation (18) follows that future con-
sumption plans are of the form ​​C​t+j​​ ( ​(P, D, W )​​ t+j​ ).​ Expected future consumption 

44 Obviously, the subsequent discussion takes for granted the fact that investors are homogeneous is not com-
mon knowledge. 

45 See Adam and Marcet (2011) for a discussion of how in the presence of trading constraints, this conclusion 
breaks down with linear consumption preferences. 
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thus depends on the agent’s price expectations, say those implied by equation (26). 
Indeed, whatever are the agent’s price expectations, subjective consumption plans 
will adjust, so as to satisfy the first-order condition (29). As a result, equation (31) 
will also hold. Equation (31) thus fails to impose any restriction on what optimizing 
agents can possibly believe about the price process, given their knowledge about the 
processes for ​​W​t​​​ and ​​D​t​​​. With the considered nonlinear utility function, we can thus 
simultaneously assume that agents maximize utility, hold the subjective price beliefs 
(26)–(27) and have rational expectations about dividends and wages.

The fact that equilibrium prices can be written as a discounted sum of the form 
(31) differs notably from the standard pricing formula studied in modern asset- 
pricing theory, which determines equilibrium prices using

	​ ​P​t​​  ​u ′ ​( ​W​t​​ + ​D​t​​ )  = ​ E​ t​ ​​[ ​ ∑ 
j=1

​ 
∞

 ​​ ​δ ​​ j​  ​u ′ ​( ​W​t+j​​ + ​D​t+j​​ )  ​D​t+j​​  ]​  a.s.​

The RHS of this equation uses equilibrium values of future consumption instead of 
the subjective future consumption plans showing up in equation (31). In this sense, 
stock prices satisfying (31) are not efficient, because they do not discount dividends 
with the equilibrium discount factor.

C. Learning about Capital Gains

Under internal rationality, the specification of the perceived price process (26) 
dictates the way that agents learn from observed prices. The presence of an unob-
served permanent component in equation (26) gives rise to an optimal filtering prob-
lem. To obtain a parsimonious description of this problem, we specify conjugate 
prior beliefs about the unobserved persistent component ​ln ​β​t​​​ at ​t  =  0​. Specifically, 
agent ​i​’s prior is

(32)	​ ln ​β​0​​  ∼  N( ln ​m​ 0​ i ​ , ​σ​​ 2​ ), ​

where prior uncertainty ​​σ​​ 2​​ is assumed to be equal to its Kalman filter steady-state 
value, i.e.,

(33)	​ ​σ​​ 2​  ≡ ​ 
− ​σ​ ν​ 2​ + ​√ 

_________
  ​​(​σ​ ν​ 2​)​​​ 2​ + 4 ​σ​ ν​ 2​ ​σ​ ε​ 2​ ​
   _______________  

2
 ​  .​

Equations (26), (27), and (32), and knowledge of the dividend and wage income 
processes (17) then jointly specify agents’ probability beliefs ​​​​ i​​.

The optimal Bayesian filter then implies that the posterior beliefs following some 
history ​​ω​​ t​​ are given by46

(34)	​ ln​β​t​​ | ​ω​​ t​  ∼  N(ln ​m​ t​ i​ , ​σ​​ 2​ ),​

46 See West and Harrison (1997, Theorem 3.1). Choosing a value for ​​σ​​ 2​​ different from the steady-state 
value (33) would only add a deterministically evolving variance component ​​σ​ t​ 2​​ to posterior beliefs with the 
property ​​lim​ t→∞​ ​ ​ ​ σ​ t​ 2​  = ​ σ​​ 2​​ , i.e., it would converge to the steady-state value. 
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with

(35)	​ ln ​m​ t​ i​  =   ln ​m​ t−1​ i ​  − ​ ​σ​ v​ 2​ ___ 
2
 ​ + g​(ln ​P​t​​ − ln ​P​t−1​​ + ​ ​σ​ ε​ 2​ + ​σ​ v​ 2​ ______ 

2
 ​  − ln ​m​ t−1​ i ​ )​ ,

(36)	 g  =  ​   ​σ​​ 2​ ______ 
​σ​​ 2​ + ​σ​ ε​ 2​

 ​ .​

Agents’ beliefs can thus be parsimoniously summarized by a single state variable 
(​​m​ t​ i​​) describing agents’ degree of optimism about future capital gains. These beliefs 
evolve recursively according to equation (35) and imply that

(37)	​ ln ​m​ t​ i​  =  ln ​E​ t​ ​​​ i​​​[​ ​P​t+1​​ ____ ​P​t​​
 ​ ]​ − ​σ​​ 2​/2, ​

so that equation (35) is—up to some (small) variance correction and the pres-
ence of a time lag—identical to the adaptive prediction model (13) considered in  
Section IID.

The subjective price beliefs (26), (27), and (32) generate perfect foresight equi-
librium price expectations in the special case in which prior beliefs are centered at 
the growth rate of dividends, i.e.,

	​ ln ​m​ 0​ i ​  =  ln ​β​​ D​ ,​

and when considering the limiting case with vanishing uncertainty, where ​​
(​σ​ ε​ 2​ , ​σ​ ν​ 2​ , ​σ​ D​ 2 ​ , ​σ​ W​ 2 ​)​  →  0​. Agents’ prior beliefs at ​t  =  0​ about price growth in ​t  ≥  1​ 
then increasingly concentrate at the perfect foresight outcome ​ln ​β​​ D​​  (see equations 
(26) and (27)). With price and dividend expectations being at their perfect fore-
sight value, the perfect foresight equilibrium prices implied by Proposition 2 for 
the vanishing noise limit become the equilibrium outcome at ​t  =  0​. Importantly, 
it continues to be possible to study learning dynamics in the limit with vanishing 
risk: keeping the limiting ratio ​ ​σ​ ν​ 2​ / ​σ​ ε​ 2​​ finite and bounded from zero as uncertainty 
vanishes, the Kalman gain parameter ​g,​ defined in equation (36), remains well spec-

ified and satisfies ​lim ​ ​σ​ ν​ 2​ __ 
​σ​ ε​ 2​

 ​  =  lim ​  ​g​​ 2​ ___ 1 − g ​​. We will exploit this fact in Section VII when 

presenting analytical results.

VI.  Dynamics under Learning

This section explains how equilibrium prices are determined under the subjective 
beliefs introduced in the previous section and how they evolve over time.

Agents’ stock demand is given by equation (22). Stock demand depends on the 
belief ​​m​ t​ i​​ , which characterizes agents’ capital gains expectations. These beliefs 
evolve according to (35). As a benchmark, we shall now assume that all agents 
hold identical beliefs (​​m​ t​ i​  = ​ m​t​​​ for all ​i​). In doing so, we assume that the marginal 
investor has return expectations in line with those documented for the survey data. 
We consider the homogeneous agent case first, so as to stay as close as possible to 
the representative agent settings typically considered under RE. Section VIIIB con-
siders extensions to settings with heterogeneous beliefs.
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Using the representative agent assumption, the fact that stocks are in unit supply 
and imposing market clearing in periods ​t​ and ​t − 1​ in equation (22), one obtains 
that the equilibrium price in any period ​t  ≥  0​ solves

(38)	​ 1  =  S​(1, ​ ​P​t​​ ___ ​D​t​​
 ​ , ​ ​W​t​​ ___ ​D​t​​

 ​ , ​m​t​​)​.​

The beliefs ​​m​t​​​ and the price dividend ratio ​​P​t​​ / ​D​t​​​ are now simultaneously deter-
mined via equations (35) and (38). Due to a complementarity between realized 
capital gains and expected future capital gains,47 this simultaneity can give rise to 
multiple market-clearing price and belief pairs. In the learning literature, the stan-
dard approach to resolve this issue consists of assuming that agents use only lagged 
endogenous variables to update model estimates (Eusepi and Preston 2011; Evans 
and Honkapohja 2001; Marcet and Nicolini 2003; Sargent, Williams, and Zha 2009). 
In our benchmark specification we shall follow this approach, but we provide below 
Bayesian foundations for lagged updating in a setting where agents can observe 
current prices. Furthermore, as we show in Section XC, lagged belief updating is 
objectively optimal because agents who update beliefs using current price informa-
tion experience lower utility in equilibrium.

Introducing an updating lag into equation (35) can be justified as internally ratio-
nal by slightly modifying the information structure. The modification is relatively 
straightforward and consists of assuming that agents observe at any time ​t​ informa-
tion about the lagged transitory price growth component ​​ε​t−1​​​ entering equation (26). 
In such a setting, it is optimal to give less weight to the last available price growth 
observation, when estimating the permanent component ​​β​t​​​. This is so because the 
last observation is more noisy. Formally, online Appendix A7 shows that in the limit 
where agents learn all transitory factors with a lag, Bayesian updating implies

(39)	​ ln ​m​t​​  =  ln ​m​t−1​​ + g​(ln ​P​t−1​​ − ln ​P​t−2​​ − ln ​m​t−1​​)​ + g ln ​ε​ t​ 1​ , ​

where updating now occurs using only lagged price growth (even though agents do 

observe current prices) and where ​ln ​ε​ t​ 1​  ∼  iiN​( ​ − ​σ​ ε​ 2​ ___ 2 ​  , ​σ​ ε​ 2​ )​​ is a time ​t ​ innovation to 

agent’s information set (unpredictable using information available to agents up to 
period ​t − 1​). The shock ​ln ​ε​ t​ 1​​ thereby captures the information that agents receive 
in period ​t​ about the transitory price growth component ​ln ​ε​t−1​​​.

With this slight modification, agents’ beliefs ​​m​t​​​ are now predetermined at time ​t​ , 
so that the economy evolves according to a uniquely determined recursive process: 
equation (38) determines the market-clearing price for period ​t​ given the beliefs ​​m​t​​​ 
and equation (39) determines how time ​t​ beliefs are updated following the observa-
tion of the new market-clearing price.48

47 Intuitively, a higher PD ratio implies higher realized capital gains and thus higher expectations of future gains 
via equation (35). Higher expected future gains may in turn induce a higher willingness to pay for the asset, thereby 
justifying the higher initial PD ratio. 

48 There could still be an indeterminacy arising from the fact that ​S​( · )​​ is nonlinear, so that equation (38) may 
not have a unique solution. We have not encountered such problems in our analytical solution or when numerically 
solving the model. 
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VII.  Equilibrium: Analytic Findings

This section derives a closed-form solution for the equilibrium asset price for 
the special case where all agents hold the same subjective beliefs ​​ and where 
these beliefs imply no (or vanishing) uncertainty about future prices, dividends, 
and wages. While the absence of uncertainty is unrealistic from an empirical stand-
point, it helps us in deriving key insights into how the equilibrium price depends on 
agents’ beliefs, as well as on how prices and beliefs evolve over time.49 The empir-
ically more relevant case with uncertainty will be considered in Section IX using 
numerical solutions.

We present a series of results that increasingly adds assumptions on agents’ beliefs 
system ​​. The next section provides a closed-form expression for the equilibrium 
PD ratio as a function of agents’ subjective expectations about future stock market 
returns for any belief system ​​ without uncertainty. Section VIIB then discusses the 
pricing implications of this result for the subjective capital gains beliefs presented 
in Section V. Finally, Section VIIC shows how the interaction between asset price 
behavior and subjective belief revisions can temporarily delink asset prices from 
their fundamental value, i.e., give rise to a self-reinforcing boom and bust cycle in 
asset prices along which subjective expected returns rise and fall.

A. Main Result

Letting ​​R​t+1​​  ≡ ​ (​P​t+1​​ + ​D​t+1​​)​/ ​P​t​​​ denote the stock return, we have following 
main result.50

Proposition 3: Suppose ​u(C )   = ​ C​​ 1−γ​ / (1 − γ )​ , agents’ beliefs ​​ imply no 
uncertainty about future prices, dividends, and wages. Assume given posterior 
beliefs about prices, dividends and wages that satisfy

(40)	​ ​ lim​ 
T→∞

​ 
​
 ​ ​ E​ t​ ​ ​R​T​​  >  1  and  ​ lim​ 

T→∞
​ 

​
 ​ ​ E​ t​ ​​( ​ ∑ 

j=1
​ 

T

  ​​​(​ ∏ 
i=1

​ 
j

  ​​ ​  1 ____ ​R​t+i​​
 ​)​ ​W​t+j​​)​  <  ∞, ​

then, if ​​| ​ S 
¯

 ​ |​, ​|​ 
_
 S ​|​​ are sufficiently large, the equilibrium PD ratio in period ​t​ is given by

(41)	​​  ​P​t​​ ___ ​D​t​​
 ​  = ​ (1 + ​ ​W​t​​ ___ ​D​t​​

 ​)​ ​ ∑ 
j=1

​ 
∞

 ​​​(​​(​δ​​ ​ 1 _ γ ​​)​​​ 
j

​ ​​(​E​ t​ ​ ​ ∏ 
i=1

​ 
j

  ​​ ​  1 ____ ​R​t+i​​
 ​)​​​ 

1−​ 1 _ γ ​

​)​ 

	 − ​ 1 ___ ​D​t​​
 ​ ​E​ t​ ​​( ​ ∑ 

j=1
​ 

∞
 ​​​(​ ∏ 

i=1
​ 

j

  ​​ ​  1 ____ ​R​t+i​​
 ​)​ ​W​t+j​​)​ ​.

49 An analytic solution can be found because in the absence of uncertainty one can evaluate more easily the 
expectations of nonlinear functions of future variables showing up in agents’ FOCs. 

50 The proof can be found in online Appendix A8. 
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Conditions (40) insure that the infinite sums in the pricing equation (41) 
converge.51 Under the additional assumption that agents hold rational wage and 
dividend expectations and that ​​W​t​​ / ​D​t​​  =  ρ,​ equation (41) simplifies further to52

(42)	​​  ​P​t​​ ___ ​D​t​​
 ​  = ​ (1 + ρ)​ ​ ∑ 

j=1
​ 

∞
 ​​​(​​(​δ​​ ​ 1 _ γ ​​)​​​ 

j

​ ​​(​E​ t​ ​ ​ ∏ 
i=1

​ 
j

  ​​ ​  1 ____ ​R​t+i​​
 ​)​​​ 

​ γ−1 ___ γ ​

​)​ 

	 − ρ​( ​ ∑ 
j=1

​ 
∞

 ​​ ​​(​β​​ D​)​​​ j​​(​E​ t​ ​ ​ ∏ 
i=1

​ 
j

  ​​ ​  1 ____ ​R​t+i​​
 ​)​)​.​

We now discuss the implications of equation (42), focusing on the empirically rele-
vant case where ​ρ  >  0​ and ​γ  >  1​.

Consider first the upper term on the RHS of equation (42), which is decreasing 
in the expected asset returns. This emerges because for ​γ  >  1​ the wealth effect 
of a change in return expectations then dominates the substitution effect, so that 
expected asset demand and therefore the asset price has a tendency to decrease as 
return expectations increase. The negative wealth effect thereby increases in strength 
if the ratio of wage to dividend income (​ρ​) increases. This is the case because higher 
return expectations also reduce the present value of wage income.

Next, consider the lower term on the RHS of equation (42), including the neg-
ative sign premultiplying it. This term depends positively on the expected returns 
and captures a substitution effect that is associated with increased return expec-
tations. This substitution effect only exists if ​ρ  >  0​ , i.e., only in the presence of 
nondividend income, and it is increasing in ​ρ​. It implies that increased return expec-
tations are associated with increased stock demand and thus with a higher PD ratio 
in equilibrium. It is this term that allows the model to match the positive correlation 
between expected returns and the PD ratio.

This substitution effect is present even in the limiting case with log consumption 
utility ​(γ  →  1)​. The upper term on the RHS of equation (42) then vanishes because 
the substitution and wealth effects associated with changes in expected returns can-
cel each other, but the lower term still induces a positive relationship between prices 
and return expectations. The substitution effect is also present for ​γ  >  1​ and can 
then dominate the negative wealth effect arising from the upper term on the RHS of 
(42). Consider, for example, the opposite limit with ​γ  →  ∞​. Equation (42) then 
delivers

	​ ​ ​P​t​​ ___ ​D​t​​
 ​  = ​  ∑ 

j=1
​ 

∞
 ​​​(1 + ρ ​ ∑ 

j=1
​ 

∞
 ​​​(1 − ​​(​β​​ D​)​​​ j​)​)​ ​(​E​ t​ ​ ​ ∏ 

i=1
​ 

j

  ​​ ​  1 ____ ​R​t+i​​
 ​)​.​

Since ​​β​​ D​  >  1​ , there is a positive relationship between prices and expected asset 
returns, whenever ​ρ​ is sufficiently large. The two limiting results (​γ  →  1​ and ​

51 These are satisfied, for example, for the expectations associated with the perfect foresight RE solution. 
Equation (41) then implies for ​p  =  1​ that the PD ratio equals the perfect foresight PD ratio, i.e., the value given 
by equation (24) with ​​ε​ t​ W​  =  1​ , as is easily verified. Conditions (40) are equally satisfied for the subjective beliefs 
defined in Section V, when considering the case with vanishing uncertainty ​(​σ​ ε​ 2​ , ​σ​ ν​ 2​ , ​σ​ D​ 2 ​ , ​σ​ W​ 2 ​ )  →  0​. 

52 In deriving equation (42) we abstract from transitional dynamics in ​​W​t​​/​D​t​​​ and set ​​W​t​​/​D​t​​  =  ρ​. 
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γ  →  ∞​) thus suggest that for sufficiently large ​ρ​ the model can generate a positive 
relationship between return expectations and the PD ratio, in line with the evidence 
obtained from survey data.

B. PD Ratio and Expected Capital Gains

Since future stock returns depend on the belief system and on current PD 
ratio, equation (42) does not yet give an explicit solution for the PD ratio. 
For the belief system introduced in Section V,53 we have ​​E​ t​ ​​[​P​t+i​​]​ = ​​(​m​t​​)​​​ i​ ​P​t​​​  
and ​​E​ t​ ​ ​D​t+i​​ = ​​(​β​​ D​)​​​ i​ ​D​t​​​ , so that without uncertainty

	​ ​E​ t​ ​ ​R​ t+i​ −1​  = ​   ​E​ t​ ​ ​P​t+i−1​​  ____________  
​E​ t​ ​ ​P​t+i​​ + ​E​ t​ ​ ​D​t+i​​

 ​  = ​​ (​m​t​​ + ​​(​β​​ D​/​m​t​​)​​​ 
i−1

​ ​β​​ D​ ​ ​D​t​​ ___ ​P​t​​
 ​)​​​ 

−1

​ .​

Substituting this into (42) gives a nonlinear relationship between the PD ratio and 
the subjective capital gain expectations ​​m​t​​​. Since a closed-form solution for the PD 
ratio is unavailable, we show numerical solutions of this equation.

Figure 5 depicts the relationship between the PD ratio and ​​m​t​​​ using the param-
eterization employed in our quantitative application later on, but abstracting from 
future uncertainty.54 Figure 5 shows that there is a range of price growth beliefs 
around the perfect foresight value (​​m​t​​  = ​ β​​ D​​ ) over which the PD ratio depends 
positively on expected price growth, similar to the positive relationship between 
expected returns and the PD ratio derived analytically in the previous section. Over 
this range, the substitution effect dominates the wealth effect because our calibra-
tion implies that dividend income finances only a small share of total consumption 
(approximately 4.3 percent). As a result, stock market wealth is only a small share 

53 Online Appendix A9 proves that condition (40) is satisfied for all beliefs ​​m​t​​  >  0​. 
54 The parameter values are given by those listed in Table 2 and by the estimated parameters for the model with 

diagonal matrix from Table 3, i.e., ​g  =  0.262​ , ​γ  =  2.03​ , ​δ  =  0.99514​ , ​p  =  0.95​. 
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of the total present value of household wealth (the same 4.3 percent) when beliefs 
assume their perfect foresight value (​​m​t​​  = ​ β​​ D​​).

Figure 5 also reveals that there exists a capital gains belief beyond which the PD 
ratio starts to decrease for higher ​m​. Mathematically, this occurs because if ​​m​t​​ → ∞​ , 
expected returns also increase without bound,55 so that ​​E​ t​ ​ ​∏ i=1​ 

j  ​​ ​  1 ___ ​R​t+i​​
 ​  →  0​.  

From equation (42) one then obtains ​​ ​P​t​​ __ ​D​t​​
 ​  →  0​.

The economic intuition for the existence of a maximum PD ratio is as follows: for 
higher ​​m​t​​​ the present value of wage income is declining, as increased price growth 
optimism implies higher expected returns56 and therefore a lower discount factor. 
This can be seen by noting that the FOC (29) can alternatively be written as

	​ 1  =  δ ​E​ t​ ​​[​​(​ ​C​t+1​​ ____ ​C​t​​
 ​ )​​​ 

−γ

​ ​R​t+1​​]​,​

which implies that increased return expectations ​​E​ t​ ​ ​R​t+1​​​ imply a lower discount 
factor ​δ ​E​ t​ ​​[​​(​C​t+1​​ / ​C​t​​)​​​ −γ​]​​.57 With increased optimism, the present value of wage 
income thus falls. At the same time, stock market wealth initially increases strongly. 
Indeed, at the maximum PD ratio, stock market wealth amounts to approximately 
4.5 times the value it assumes in the perfect foresight solution (see Figure 5). This 
relative wealth shift has the same effect as a decrease in the wage to nonwage income 
ratio ​ρ​. As argued in Section VIIA, for sufficiently small values of ​ρ​ the income 
effect starts to dominate the substitution effect, so that prices start to react negatively 
to increased return optimism.

C. Endogenous Boom and Bust Dynamics

We now explain how the interplay between price realizations and belief updat-
ing can temporarily delink asset prices from their fundamental values. This process 
emerges endogenously and takes the form of a sustained asset price boom along 
which expected returns rise and that ultimately results in a price bust along which 
expected returns fall. This feature allows the model to generate volatile asset prices 
and to capture the positive correlation between expected returns and the PD ratio.

55 This follows from ​​E​ t​ ​ ​R​t+i+1​​  = ​ E​ t​ ​ ​ ​P​t+i+1​​ + ​D​t+i+1​​  _________ ​P​t+i​​
 ​   > ​ E​ t​ ​ ​ ​P​t+i+1​​ ____ ​P​t+i​​

 ​  = ​ m​t​​​. 
56 This is shown in online Appendix A11, which depicts the relationship between expected capital gains and 

expected returns at various forecast horizons. 
57 This holds true under the maintained assumption of no or vanishing uncertainty. 

Table 2—Model Calibration

Parameter Value Calibration target

​​β​​ D​​ 1.0048 Average quarterly real dividend growth
​​σ​D​​​ 0.0192 Standard deviation quarterly real dividend growth
ρ 22 Average consumption-dividend ratio
​​σ​DW​​​ −3.51 · ​​10​​ −4​​ Jointly chosen such that ​​corr​t​​​(​​C​t+1​​​/​​C​t​​​, ​​D​t+1​​​/​​D​t​​​) = 0.2
​​σ​W​​​ 0.0186   and ​​std​t​​​(​​C​t+1​​​/​​C​t​​​) = (1/7​) ​std​t​​​(​​D​t+1​​​/​​D​t​​​)
​​σ​ε​​​ 0.0816 SD of quarterly real stock price growth
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Consider Figure 5 and a situation in which agents become optimistic, in the sense 
that their capital gains expectations ​​m​t​​​ increase slightly above the perfect foresight 
value ​​m​t−1​​  = ​ β​​ D​​ entertained in the previous period.58 Figure 5 shows that this 
increase in expectations leads to an increase in the PD ratio, i.e., ​​P​t​​/​D​t​​ > ​P​t−1​​/​D​t−1​​​.  
Moreover, due to the relatively steep slope of the PD function, realized capital gains 
will strongly exceed the initial increase in expected capital gains. The belief updat-
ing equation (39) then implies further upward revisions in price growth expectations 
and thus further capital gains, leading to a sustained asset price boom in which the 
PD ratio and return expectations jointly move upward.

The price boom comes to an end when expected price growth reaches a level 
close to where the PD function in Figure 5 reaches its maximum.59 At this point, 
stock prices grow at most at the rate of dividends (​​β​​ D​ )​ , but agents hold consider-
ably more optimistic expectations about future capital gains (​​m​t​​  > ​ β​​ D​​). Investors’ 
high expectations will thus be disappointed, which subsequently leads to a reversal. 
During a price boom, expected price growth and actual price growth thus mutually 
reinforce each other. The presence of an upper bound in prices implies, however, 
that the boom must come to an end. Price growth must thus eventually become very 
low, sending actual and expected stock price growth eventually down.

The previous dynamics are also present in the stochastic model considered in the 
next sections. They introduce low frequency movements in the ​PD​ ratio, allowing 
the model to replicate boom and bust dynamics and thereby empirically plausible 
amounts of asset price volatility, despite assuming standard consumption prefer-
ences. These dynamics also generate a positive correlation between the PD ratio and 
expected returns.60

In the deterministic model, however, the dynamics for the PD ratio tend to be 
temporary phenomena because beliefs tend to converge to the perfect foresight 
equilibrium.61

Lemma 1: Consider the limiting case without uncertainty and suppose investors 
hold rational dividend and wage beliefs:

	 (i)	 For any ​​m​t​​  >  0​ , we have ​​lim​ t→∞​ ​ ​ ​ m​t​​  = ​ β​​ D​​ , whenever ​​lim​ t→∞​ ​ ​ ​ m​t​​​ exists.

	 (ii)	 For ​​m​t​​​ sufficiently close to ​​β​​ D​​ and ​g  < ​  1 _ 2 ​​ , we have ​​lim​ t→∞​ ​ ​ ​ m​t​​  = ​ β​​ D​​ if

      (43)	​ − 1  < ​   ​β​​ D​ _______ 
PD(​β​​ D​)

 ​ ​​​ ∂ PD(m ) _______ ∂ m ​ |​​
m=​β​​ D​

​​  <  1, ​

58 In the model with uncertainty, such upward revisions can be triggered by fundamentals, e.g., by an exception-
ally high dividend growth realization in the previous period, which is associated with an exceptionally high price 
growth realization. 

59 In the model with noise, fundamental shocks, e.g., a low dividend growth realization, can cause the process 
to end well before reaching this point. 

60 While the arguments above only show that expected capital gains correlate positively with the PD ratio, 
online Appendix A11 shows that expected capital gains and expected returns comove positively, so that expected 
returns also comove positively with the PD ratio. 

61 The proof of Lemma 1 can be found in online Appendix A10. 
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		  where ​PD(m )​ is the equilibrium PD ratio associated with beliefs ​m​ , as 
implied by equation (42).

The first result in the lemma provides a global convergence result. It shows that if 
beliefs settle down in this economy, they must settle down on the perfect foresight 
equilibrium value. When this is the case, equilibrium prices also converge to the 
perfect foresight value. While technically one cannot rule out convergence to deter-
ministic or chaotic cycles, the second result in the lemma shows that locally beliefs 
do converge to the perfect foresight equilibrium, whenever the elasticity of the PD 
ratio with respect to price growth believes is below 1 in absolute value and the gain 
parameter ​g​ not too large. Condition (43) is satisfied, for example, for the parame-
terization of the estimated models reported in Table 3.

To illustrate the global belief dynamics further, Figure 6 depicts how beliefs 
evolve over time using the parameterization of the estimated model from Table 3.62 
The arrows in the figure indicate, starting from any point ​(​m​t​​ , ​m​t−1​​​) in the plane, 

62 The vector field uses the parameters from the estimated model with diagonal matrix and estimated ​p ​ reported 
in Table 3. The vector fields for the other models from Table 3 look almost identical. 

Table 3—Asset-Pricing Moments, Data, and Estimated Models

US data 
1946:I–2012:I

(quarterly real values)
Subjective belief model 

(efficient Σ matrix)

Subjective belief 
model 

(diagonal Σ matrix)

Moment Moment t-ratio Moment t-ratio

E[PD] 139.8 120.1 −0.79 115.2 −0.98
std[PD] 65.2 95.6 2.06 88.2 1.56
corr[​​PD​t​​​ , ​​PD​t−1​​​] 0.98 0.98 0.65 0.98 0.90
std[​R​] 8.00 8.88 2.20 7.74 −0.64
c −0.0041 −0.0055 −1.11 −0.0050 −0.77
R2 0.25 0.23 −0.13 0.20 −0.34
​E[R] − 1​ 1.89 1.91 0.04 1.82 −0.15
​E[​R​​ b​] − 1​ 0.13 1.01 5.16 0.99 5.08

UBS survey data
corr[​​PD​t​​​, ​​E​ t​ 

​​ ​​R​t, t+4​​​] 0.79 0.80 0.07 0.79 0.01

Estimates
​​g ˆ ​​ 0.0282 0.0262
​​δ ˆ ​​ 0.99524 0.99514
​​γ ˆ ​​  2.05 2.03
p 0.95 0.95

Notes: The table reports US asset-pricing moments (column 2) using the data sources described in online 
Appendix A1, the moments of the estimated models (columns 3 and 5) and t-ratios for the model moments (col-
umns 4 and 6) from the SMM estimation. t-ratios are defined as (data moment − model moment)/(estimated stan-
dard deviation of the model moment). The reported moments are as follows: E[PD], std(PD) and corr[​​PD​t​​​, ​​PD​t−1​​​] 
denote the mean, standard deviation, and autocorrelation of the quarterly price dividend ratio, respectively; E[​R​] 
and std[​R​] denote the mean and standard deviation of the gross real quarterly stock return, expressed in percentage 
points, respectively; E[​​R​​ b​​] is the gross mean risk-free interest rate, expressed in percentage points; c and R2 denote, 
respectively, the regression coefficient and R2 value obtained in equation (5) when ​​R​t,t+N​​​ is excess stock returns and 
N = 5 years; corr[​​PD​t​​​, ​​E​ t​ 

​​ ​​R​t, t+4​​​] denotes the correlation between the PD ratio and the subjective return expecta-
tions, with these being measured in the data column using the mean of the UBS survey (own portfolio), deflated by 
the mean inflation expectations from the SPF survey. The estimated parameters are the updating gain g from equa-
tion (39), the time discount factor δ, the coefficient of relative risk aversion γ and the persistence p of the wage-div-
idend ratio from equation (16).
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the direction in which the belief pair (​​m​t​​ , ​m​t−1​​​) evolves.63 The black dot indicates 
the position of the perfect foresight equilibrium (​​m​t​​  = ​ m​t−1​​  = ​ β​​ D​ )​ , which is a 
rest point of the dynamics. In line with what we find when simulating the model, 
Figure 6 strongly suggests that beliefs globally converge to the perfect foresight 
equilibrium in the absence of stochastic disturbances.

Figure 6 also shows that it takes time for beliefs to settle down at the perfect 
foresight equilibrium and that agents will make persistent forecast errors along the 
transition path. In particular, when agents are optimistic and stock are prices high 
(​​m​t​​  > ​ β​​ D​​  ), there is a tendency for prices and beliefs to return toward their perfect 
foresight values, so that realized capital gains are low. Similarly, when agents are 
pessimistic and stock prices low (​​m​t​​  < ​ β​​ D​ )​ , the tendency of prices and beliefs to 
return to the perfect foresight values implies that realized capital gains are high. 
Note that this pattern of forecast errors is consistent with the one documented for 
the survey data in Section II.

VIII.  Matching Asset-Pricing Moments

This section evaluates the ability of the model to replicate key asset-pricing 
moments when using dividend and wage shocks as fundamental driving forces.

63 To increase readability of the graph, the length of the arrows ​l​ is nonlinearly rescaled by dividing by ​​l​​ 3/4​​ and 
then linearly adjusted, so as to fit into the picture. 
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The set of data moments that we seek to replicate is listed in the second column 
of Table 3. The first eight asset-pricing moments listed in the table are standardly 
used in the asset-pricing literature to summarize the main features of stock price 
volatility.64 They include the mean, standard deviation, and autocorrelation of the 
quarterly PD ratio (E[PD], std[PD], and corr[PD​​​​t​​​ , PD​​​​t−1​​​ ], respectively), the mean 
and standard deviation of quarterly real stock returns (E[​​r​​ s​​ ] and std[​​r​​ s​​ ]), the risk-
free interest rate (E[​​r​​ b​​ ]) and the regression coefficient (​c​) and R-squared value (​​R​​ 2​​)  
obtained in equation (5) when ​​R​t, t+N​​​ is the five year ahead excess return.65 As is 
well known, it is difficult for RE models with time separable utility functions to 
jointly match these moments.

We augment the standard set of moments in Table 3 by the correlation 
between the PD ratio and expected stock returns from the UBS survey, denoted 
corr[PD​​​​t​​​ ,E​​​​ t​ ​​ R​​​​t+1​​​ ], so as to capture the behavior of survey data.

Numerically solving the nonlinear asset-pricing model with subjective beliefs 
turns out to be computationally time-consuming, despite the fact that we extensively 
rely on parallelization in the solution algorithms.66 For this reason, we match the 
model to the data by calibrating most parameters and estimate only a key subset 
using the simulated method of moments (SMM).

Table 2 reports the calibrated parameters and the calibration targets.67 The mean 
and standard deviation of dividend growth (​​β​​ D​​ and ​​σ​D​​​) are chosen to match the cor-
responding empirical moments of the US dividend process. The ratio of nondividend 
to dividend income (​ρ​) is chosen to match the average dividend-consumption 
ratio in the United States for 1946–2011.68 The standard deviation of wage inno-
vations (​​σ​W​​​) and the covariance between wage and dividend innovations (​​σ​DW​​​)  
are chosen, in line with Campbell and Cochrane (1999), such that the correlation 
between consumption and dividend growth is 0.2 and the standard deviation of con-
sumption growth is one-seventh of the standard deviation of dividend growth.69 
The perceived uncertainty in stock price growth (​​σ​ε​​​) is set equal to the empirical 
standard deviation of stock price growth.70

This leaves us with four remaining parameters: the updating parameter ​g​ , the 
time discount factor ​δ​ , the risk aversion parameter ​γ​, and the persistence parameter 
for the wage-dividend ratio ​p​. Letting ​θ = (g, δ, γ, p )​ denote this set of parameters 
and ​Θ​ the set of admissible values, the SMM estimate ​​θ ˆ ​​ is given by

(44)	​​ θ ˆ ​  = ​ arg min​ 
θ∈Θ

​ ​​ ​ [​ ˆ ​ − (θ)]​′ ​Σ ˆ ​ ​[​ ˆ ​ − (θ )]​, ​

64 These moments are also considered in Adam, Marcet, and Nicolini (2016). 
65 The regression also contains a constant whose value is statistically insignificant and not reported in the table. 
66 The numerical solution is obtained by numerically determining the stock demand function (22) solving the 

FOC (29) under the subjectively perceived dividend, wage, and price dynamics, where agents understand that their 
beliefs evolve according to (39). We verify that in the limiting case without uncertainty, our numerical solution 
algorithm recovers the analytical solution derived in Proposition 3. Furthermore, in the case with uncertainty, we 
insure the accuracy of the numerical solution by verifying that the Euler equation errors are in the order of ​​10​​ −5​​ over 
the relevant area of the state space. Insuring this requires a considerable amount of adjustment by hand of the grid 
points and grid size used for spanning the model’s state space. Further details of the solution approach are described 
in online Appendix A12. The MatLab code used for solving the model is available upon request. 

67 The targets are chosen to match features of the fundamental processes emphasized in the asset-pricing literature. 
68 See online Appendix A4 for further details. 
69 For details on how this can be achieved, see online Appendix A4. 
70 Since the gain parameter ​g​ will be small, ​​σ​ ν​ 2​​ is also small, hence the contribution of ​​σ​ ν​ 2​​ to the total variance 

in (26) is negligible. 
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where ​​ ˆ ​​ is the set of moments in the data to be matched (the ones listed in Table 3), ​
(θ)​ the corresponding moment from the model for parameter values ​θ​, and ​​Σ ˆ ​​ a 
weighting matrix.

We pursue two estimation approaches, one that implements efficient SMM and an 
alternative one that emphasizes more directly the replication of the data moments. 
Both approaches have advantages and disadvantages, as we discuss below, but ulti-
mately deliver similar estimates and model moments. All estimations exclude the 
risk-free rate from the set of moments to be matched, as the model has a hard time in 
fully replicating the equity premium. We thus only report the risk-free interest rate 
implied by the estimated models.

Our first estimation approach chooses the weighting matrix ​​Σ ˆ ​​ in equation (44) 
to be equal to the inverse of the estimated covariance matrix of the data moments 
​​ ˆ ​​ , as required for efficient SMM estimation. While an efficient weighting matrix is 
desirable for estimation, it also causes some difficulties. First, the weighting matrix 
turns out to be approximately singular: following Adam, Marcet, and Nicolini 
(2016), we thus exclude some moments from the estimation that are nearly redun-
dant, namely we exclude the excess return regression coefficient (​c​) from the set of 
estimated moments.71 Second, we also exclude the correlation between the PD ratio 
and surveyed expected returns, since the short sample for surveys provides a less 
reliable estimate of ​​Σ ˆ ​​.

The second estimation approach uses a diagonal weighting matrix ​​Σ ˆ ​​ in equa-
tion (44), with the diagonal entries consisting of the inverse of the individually esti-
mated variances of the corresponding data moments in ​​ ˆ ​​. Although this alternative 
is less efficient from an econometric point of view, the matrix ​​Σ ˆ ​​ is now guaranteed 
to be invertible, therefore we can use the full set of moments in the estimation.72 
Furthermore, this criterion just minimizes the sum of t-statistics of all the moments, 
therefore emphasizes more directly matching the moments, as typically pursued in 
the asset-pricing literature.

An unconstrained minimization of the objective function (44) over ​θ = (g, δ, γ, p)​ 
turns out to be numerically unstable and computationally too costly. For this reason, 
we impose additional restrictions on the parameter space ​Θ​. These restrictions can 
only constrain the empirical performance of the model, so that the goodness of fit 
results presented below constitute a lower bound on what the model can potentially 
achieve. Specifically, we impose ​δ(​​β​​ D​)​​ −γ​  =  0.995 ​( ​β​​ D​ )​​ −2​​ , where ​​β​​ D​​ assumes the 
value from Table 3. This additional restriction is inspired by the fact that—according 
to our experience—the model can perform reasonably well for ​​(δ, γ)​  =  (0.995, 2)​ 
and helps resolving numerical instabilities in our solution routines. We furthermore 
restrict the persistence parameter to ​p ∈ { 0.95, 0.999}​ , which is inspired by the fact 
that the sample autocorrelation of ​log (1 + ​W​t​​/​D​t​​ )​ is very high in US postwar data 
(about ​0.99​).

71 See Section V and the online Appendix in Adam, Marcet, and Nicolini (2016) for details on asymptotic 
distribution of SMM, how to use a systematic criterion for excluding moments, details on how to estimate ​​Σ ˆ ​​ and 
how to compute ​(θ )​ using small samples. 

72 As mentioned before, the risk-free rate is always excluded from estimation. 
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Table 3 reports the estimation outcome in terms of implied model moments, esti-
mated parameters, and t-ratios.73

In terms of estimated parameters, the discount factor is estimated to be close to 1 
and relative risk aversion is slightly above 2. The estimated gains (​​g ˆ ​​) are very close 
to the values obtained in the empirical Section IID.

For both estimation approaches, the model matches the data moments rather well. 
In particular, the model easily replicates the positive correlation between the PD 
ratio and expected stock returns (corr[PD​​​​t​​​ ,E​​​​ t​ ​​R​​​​t+1​​​]), in line with the value found 
in the survey data. This is achieved, even though this moment was not used in the 
estimation using the efficient weighting matrix. The model also performs well in 
terms of producing sufficient volatility for the PD ratio (std[PD]) and stock returns 
(std[r​​​​​ s​​ ]). If anything, the model tends to produce too much volatility. The model 
also succeeds in replicating the mean and autocorrelation of the PD ratio (E[PD] 
and corr[PD​​​​t​​​ ,PD​​​​t−1​​​]) and the evidence on excess return predictability (​c​ and ​​R​​ 2​​), 
even though the regression coefficient ​c​ was not included in the set of moments to 
be matched.

The most significant shortcoming of the model concerns the equity premium. 
While it matches the average stock return (E[r​​​​​ s​​ ]), it predicts a too high value for 
the risk-free rate (E[r ​​​​​ b​​ ]). Nevertheless, the model can explain about one-half of 
the equity premium observed in the data. Given the low estimated value for the 
degree of relative risk aversion (​​γ ˆ ​​), this is remarkable and we explore the mecha-
nism behind this outcome further in Section VIIIB below.

Abstracting from the mean risk-free rate, the estimation using the diagonal 
weighting matrix generates t-ratios below 2 for all model moments and often even 
t-ratios below 1. The estimation using the efficient weighting matrix performs sim-
ilarly well, but implies a slightly high volatility for stock returns and the PD ratio. 
The empirical performance of the subjective belief model is overall very good, espe-
cially when compared to the performance of the rational expectations version of 
the model, as reported in Table 4 using the same parameters as for the estimated 
model (with diagonal matrix) in Table 3. Under RE, the t-ratios all increase in abso-
lute terms, with some of the increases being quite dramatic. With objective price 
beliefs, the model produces insufficient asset price volatility (too low values for 
std[PD] and std[r​​​​​ s​​ ]) and the wrong sign for the correlation between the PD ratio 
and expected stock returns (corr[PD​​​​t​​​ ,E​​​​ t​ ​​R​​​​t+1​​​ ]). It also gives rise to a small negative 
equity premium.74 These features are rather robust across alternative parameteriza-
tions of the RE model and highlight the strong quantitative improvement obtained 
by incorporating subjective belief dynamics.

Table 5 shows that the performance of the subjective belief model is also rather 
robust across different values for the persistence parameter ​p​ of the wage-dividend 
process. The table reports the estimation outcomes when repeating the estimation 

73 The t-ratio is the ratio of the gap between the model and the data moment over the standard deviation of the 
moment in the data, as implied by the weighting matrix. For excluded moments we use the individually estimated 
standard deviations in the numerator. For the case of an efficient weighting matrix, the t-ratio for moments included 
is computed according to the proper covariance matrix that delivers a standard normal distribution (see the online 
Appendix in Adam, Marcet, and Nicolini 2016). 

74 For the considered parameterization, the equity premium is slightly negative because stocks are a hedge 
against wage income risk. 
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from Table 3 but imposing ​p = 0​ (no persistence) and ​p = 0.999​ (near unit 
root behavior). The ability of the subjective belief model to match the empirical 
asset-pricing moments is hardly affected by the persistence parameter.

Figure 7 illustrates how the subjective belief model improves empirical perfor-
mance. The figure depicts the equilibrium PD ratio (y-axis) as a function of agents’ 
capital gain beliefs (x-axis). It graphs this relationship once for the model with uncer-
tainty (dark line) and once for the vanishing noise limit analyzed in the previous 

Table 4—RE Asset-Pricing Moments

US data RE model

Moment Moment t-ratio

E[PD] 139.8 108.3 −1.26
std[PD] 65.2 11.3 −3.64
corr[​​PD​t​​​, ​​PD​t−1​​​] 0.98 0.95 −11.20
std[​R​] 8.00 1.49 −16.22
c −0.0041 −0.0181 −11.09
R2 0.25 0.72 3.66
​E[R] − 1​ 1.89 1.41 −1.04
​E[​R​​ b​] − 1​ 0.13 1.52 8.15

UBS survey data
corr[​​PD​t​​​, ​​E​ t​ 

​​ ​​R​t, t+4​​​] 0.79 −1.00 −26.36

Notes: The table reports US asset-pricing moments (second column) using the data sources 
described in online Appendix A1, the moments of the rational expectations (RE) model (col-
umn 3), and the t-ratios of the RE model (column 4). The RE model uses the parameterization of 
the estimated subjective belief model from Table 3 (diagonal matrix). See Table 3 for a descrip-
tion of the moment labels in the first column.

Table 5—Asset-Pricing Moments (Restricted Estimation)

US data 
1946:I–2012:I

Subjective 
belief model

Subjective 
belief model

(quart. real values) (diagonal matrix) (diagonal matrix)
Restriction imposed p = 0 p = 0.999

Moment Moment t-ratio Moment t-ratio

E[PD] 139.8 112.9 −1.07 116.8 −0.92
std[PD] 65.2 82.1 1.14 98.5 2.25
corr[​​PD​t​​​, ​​PD​t−1​​​] 0.98 0.98 −0.22 0.99 1.78
std[​R​] 8.00 7.91 −0.22 7.73 −0.68
c −0.0041 −0.0045 −0.36 −0.0037 0.27
R2 0.25 0.15 −0.74 0.14 −0.79
​E[R] − 1​ 1.89 1.83 −0.14 1.81 −0.17
​E[​R​​ b​] − 1​ 0.13 0.97 4.92 1.00 5.12

UBS survey data
corr[​​PD​t​​​, ​​E​ t​ 

​​ ​​R​t, t+4​​​] 0.79 0.85 0.82 0.75 −0.65

Estimates
​​g ˆ ​​ 0.0222  0.0272
​​δ ˆ ​​ 0.99510 0.99519
​​γ ˆ ​​  2.02 2.04

Notes: The table reports US asset-pricing moments (column 2) using the data sources described in online 
Appendix A1, the moments and t-ratios of the estimated subjective belief model when restricting the persistence 
parameter p from equation (16) to zero (columns 3 and 4) and when restricting p to 0.999 (columns 5 and 6). See 
Table 3 for a description of the labels used in the first column.



2392 THE AMERICAN ECONOMIC REVIEW August 2017

section (lighter line).75 While the presence of price, dividend and wage risk lowers 
the equilibrium PD ratio compared to a setting without risk, the functional form of 
the relationship remains qualitatively unchanged. The intuition from the vanishing 
noise limit thus carries over to the model with noise: the model continues to give rise 
to occasional boom and bust dynamics in asset prices.

A. Further Evidence on Model Performance

Table 6 presents further asset-pricing moments that have not been used in the 
estimation of the model. It reports data moments, the corresponding model moments 
for the estimated subjective belief model from Table 3, for the RE version of model 
and for an augmented subjective belief model featuring stock supply shocks, as 
introduced below.

Table 6 shows that the subjective belief model successfully replicates the low 
volatility of the risk-free interest rate present in the data. The subjective belief model 
even sightly underpredicts volatility. This shows that the ability to generate highly 
volatile stock returns does not rely on counterfactually making the risk-free interest 
rate very volatile. In terms of matching the low volatility of the risk-free rate, the 
performance of the subjective belief model is approximately as good as that of the 
RE model.

Table 6 also presents evidence on the quarterly autocorrelations of stock returns 
and excess stock returns. It shows that the subjective belief model overpredicts both 
autocorrelations relative to the ones present in the data. As Table 6 shows, this feature 

75 For the stochastic solution, the equilibrium PD in Figure 7 is determined from the market-clearing condition 
(38) assuming ​​W​t​​ / ​D​t​​  =  ρ​ , to be comparable with the value this variable assumes in the vanishing risk limit. The 
figure assumes the parameters implied by the estimated model with diagonal matrix from Table 3. 
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arises not solely due to the presence of subjective beliefs: the rational expectations 
versions of the model also overpredicts the autocorrelation of excess stock returns.

The failure of the subjective belief model to deliver a near zero high-frequency 
autocorrelation for returns is related to the fact that the low frequency returns gen-
erated by learning also show up at high frequency because the model features few 
transitory shocks to stock prices. As we show below, the subjective belief model 
becomes consistent with the observed value of the quarterly autocorrelations of 
stock returns and excess stock returns, when adding small i.i.d. disturbances to the 
model.

To illustrate this point in a simple way, we consider in online Appendix A13 a 
model where equilibrium stock supply in period ​t​ satisfies

	​ ​S​t​​  = ​ e​​ ​ε​ t​ s​​ ,​

where ​​ε​ t​ s​  ∼  iiN(−​σ​ ​ε​​ s​​ 2 ​/2, ​σ​ ​ε​​ s​​ 2 ​ )​ denotes an exogenous shock to the supply of stocks. 
This shock can represent extraneous demand for stocks, e.g., the one arising from 
noise or liquidity traders.76 This generalized setup nests the model without noise 
traders for the special case ​​σ​​ε​​ S​​​  =  0​.

As it turns out, small positive values for the standard deviation ​​σ​​ε​​ S​​​​ bring the 
model fully in line with the observed autocorrelations. The last two columns in 
Table 6 illustrate this fact and report the model implied autocorrelations, when set-
ting ​​σ​​ε​​ s​​​  =  1.25 · ​10​​ −3​​ , which implies that the standard deviation of aggregate stock 
supply is 0.125 percent of the average outstanding amount of stocks (which is equal 
to 1). Table 6 shows that the autocorrelations are now fully consistent with those 
observed in the data, while the standard deviation of the risk-free rate is hardly 
affected. Moreover, as shown in online Appendix A13, the presence of stock sup-
ply shocks has only small effects on the other asset-pricing moments reported in 
Table 3.

76 Alternatively, the shocks ​​ε​ t​ S​​ may capture changes to asset float, as discussed in Ofek and Richardson (2003) 
and Hong, Scheinkman, and Xiong (2006). In any case, they capture (exogenous) stock demand or supply that is 
not coming from the consumers described in equation (14). 

Table 6—Further Data and Model Moments

Data 
moment

Standard 
deviation

Estimated model
(Table 3, 

diagonal matrix)

RE version estimated 
(Table 3, diagonal 

matrix)
Estimated model 

with supply shocks

Moment t-ratio Moment t-ratio Moment t-ratio

Standard deviation 
  risk-free rate

1.11 0.24 0.83 −1.16 0.62 −2.04 0.62 −2.05

Autocorrelations
Excess stock return 0.12 0.046 0.53 9.08 0.33 4.78 0.12 0.18
Stock return 0.13 0.045 0.54 9.21 0.04 −1.87 0.14 0.37
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B. Subjective Consumption Plans and the Sharpe Ratio

A somewhat surprising feature of the estimated models in Table 3 is that they 
give rise to a fairly high Sharpe ratio, despite the fact that the estimated risk aver-
sion is relatively low. Specifically, the estimated models imply that the quarterly 
unconditional Sharpe ratio, ​​(E[ ​r​​ s​ ] − E[ ​r​​ b​ ])​/std[ ​r​​ s​ ],​ is close to ​0.1​. Since the model 
implied equity premium is too low, this value falls significantly short of the value 
of Sharpe ratio in the data (​0.22​). Yet, it significantly exceeds the value it would 
assume if agents held rational price expectations. Under RE, the Sharpe ratio would 
be tiny and approximately be given by77

(45)	​​ 
E[R] − E[​R​​ b​ ]  __________ 

std[R] ​   ≈  γ · E​[st​d​t​​ (​C​t+1​​/​C​t​​)]​  =  0.00576.​

In the presence of subjective price beliefs, however, the Sharpe ratio is approxi-
mately equal to

(46)    ​​ 
E​[​R​t+1​​]​ − E​[​R​ t​ b​]​  ____________  

std​[R]​
 ​   ≈ ​​​ 

E​[​R​t+1​​]​ − E​[​E​ t​ ​​[​R​t+1​​]​]​  ________________  
std​[R]​

 ​  

 
  



​​  

Subj. return pessimism

​ ​ 

	 + γ ​​​ 
E​[st​d​ t​ ​​[​C​t+1​​/​C​t​​]​]​  ______________  
E​[st​d​t​​​[​C​t+1​​/​C​t​​]​]​

 ​ 

 

 


​​  

​ 
Ratio of 

​ subj. to obj. ​  
consumption volatility

​

​ ​ E​[st​d​t​​​[​C​t+1​​/​C​t​​]​]​, ​

which illustrates the existence of two additional factors affecting the Sharpe ratio: 
subjective return pessimism, as present in models where agents entertain robustness 
concerns, e.g., Cogley and Sargent (2008), and the relative volatility of subjective 
consumption plans compared to the ones emerging under rational expectations. 
Subjective return pessimism contributes to the Sharpe ratio because pessimism 
depresses stock prices and thereby generates a higher equity premium ex post. 
Subjective consumption volatility affects the equity premium for standard reasons.

For the estimated models from Table 3, we find that about one-third of the 
model’s Sharpe ratio is due to subjective return pessimism and about two-thirds due 
to the second term on the RHS of equation (46).78 In both estimated models, the 
second component is so large because the average subjective standard deviation of 
consumption growth is about 12.5 times larger than the average objective standard 
deviation.79

77 See online Appendix A14 for a derivation of equations (45) and (46). 
78 The approximate Sharpe ratio decomposition (46) works quantitatively well for the estimated models from 

Table 3: the actual Sharpe ratios are 10.7 percent and 10.2 percent for the model estimated using a diagonal and an 
efficient matrix, respectively, while the terms on the RHS in equation (46) sum to 10.5 percent and 10.9 percent. 

79 The precise ratios are ​12.87​ (​12.64​) for the model from Table 3 estimated using a diagonal (efficient) matrix. 
For both models, we have ​E [ st​d​t​​ [ ​C​t+1​​ / ​C​t​​ ] ]   =  0.00273​. 
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Analyzing which future shocks contribute in agents’ mind to this high level of sub-
jectively expected consumption volatility, we find that transitory price growth shocks 
are the main culprit, i.e., the perceived shocks ​​ε​t+1​​​ in the subjective price evolution 
equation (26). These shocks move prices permanently up (or down), without an asso-
ciated change in fundamentals, and prompt agents to make contingent plans to sell (or 
buy) stocks in the future in response to these shocks. These expectations of future trade 
increase subjective expected consumption volatility, while the representative agent 
assumption insures that agents will never actually buy or sell stocks in equilibrium. As 
a result, subjective and objective consumption volatility diverge considerably.

The reason for this discrepancy is largely due to the fact that the homogeneous 
agent model imposes zero trade in equilibrium. Equilibrium consumption is then not 
affected by stock prices. As we now illustrate, one can resolve this discrepancy by 
introducing heterogeneity among agents.

We show this using two simple heterogeneous agent extensions of our baseline 
model. The first extension studies an ad hoc modification in which agents’ beliefs 
at time ​t​ are given by

(47)	​ ln ​m​ t​ i​  =  ln ​m​t​​ + ln ​μ​ t​ i​ , ​

where ​ln ​μ​ t​ i​ ∼ iiN(0, ​σ​ μ​ 2 ​​) is an idiosyncratic and transitory shock to agent ​i​’s capital 
gain optimism and where ​​m​t​​​ evolves as in the baseline model. The second extension 
considers a fully microfounded extension, where—in line with the belief updating 
equation (39)—agents’ expectations evolve according to

(48)	​ ln ​m​ t​ i​  =  ln ​m​ t−1​ i ​  + g​(ln ​P​t−1​​ − ln ​P​t−2​​ − ln ​m​ t−1​ i ​ )​ + g ln ​ε​ t​ 1, i​ , ​

where ​​(g ln ​ε​ t​ 1, i​)​  ∼  iiN(0, ​σ​ ε, 1​ 2  ​ )​ is idiosyncratic with rather persistent effects on 
beliefs.80 In both extensions, belief heterogeneity induces trade in equilibrium, 
which increases the objective volatility of individual consumption growth relative 
to the representative agent setting. We then calibrate the variances ​​σ​ μ​ 2 ​​ and ​​σ​ ε, 1​ 2  ​​ such 
that the objective and subjective standard deviations are approximately aligned 
(​E​[st​d​ t​ ​​[​C​ t+1​ i ​ /​C​ t​ i​]​]​ ≈ E​[st​d​t​​​[​C​ t+1​ i ​ /​C​ t​ i​]​]​​).

Table 7 reports the asset-pricing moments and t-ratios for both heterogeneous 
agent extensions.81 As becomes clear from Table 7, the extended models can rep-
licate the asset-pricing moments equally well as the baseline model, but also align 
the subjective and objective standard deviations of consumption growth. The ability 
of the model to generate a low risk-free rate is actually improved relative to the 
representative agent model, with the average risk-free rate even becoming slightly 
negative for the model with persistent shocks.82 Overall, Table 7 illustrates the 

80 As is clear from online Appendix A7, the shock ​ln ​ε​ t​ 1, i​​ represents information that the agent receives about 
the perceived transitory price shock. Since these shocks exist only in subjective terms, the baseline model sets ​
ln ​ε​ t​ i​  =  ln ​ε​t​​  =  0​ for all ​t​. 

81 The table uses the model parameterization of the estimated model from Table 3 (diagonal matrix). For the 
case with persistent belief shocks, we slightly adjust the updating gain ​g​ to improve the match with the asset-pricing 
moments. The simulations use 51 different agents. 

82 The strong effect on the risk-free rate is due to the tight borrowing limits (​​B​ t​ i​  ≥  0​) that we impose: see 
the discussion in Section III. The effect would likely be less strong for less strict borrowing limits, but this would 
require fundamental changes to the solution approach, including an increase in the number of state variables. 
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robustness of our quantitative results toward allowing for investor heterogeneity. 
Adam et al. (2015) explore in greater detail a heterogeneous agent version of the 
present model and show that the model successfully matches important stylized 
facts regarding trading volume.

C. Expectational Errors

Since our model matches stock price behavior and the comovement pattern 
between survey expectations and stock prices, agents’ expectations in the model 
fail to satisfy the rational expectations hypothesis, in line with what has been doc-
umented for the survey evidence. To document the quantitative importance of this 
fact, this section applies the RE tests from Section IIB to the subjectively expected 
one-quarter-ahead capital gain expectations from our estimated models. In particu-
lar, we test the acceptance rates of the rational expectations hypothesis (​​H​0​​: c  =  c)​ 
at various significance intervals and various sample lengths, using the test statistic 

Table 7—Heterogeneous Agent Model with Equilibrium Trade

US data 
1946:I–2012:I

(quart. real values)

Subjective belief model 
(transitory belief 

shocks)

Subjective belief 
model (persistent 

belief shocks)

Moment Moment t-ratio Moment t-ratio

E[PD] 139.8 113.5 −1.05 120.6 −0.77
std[PD] 65.2 85.9 1.40 90.8 1.73
corr[​​PD​t​​​ , ​​PD​t−1​​​] 0.98 0.98 0.63 0.98 0.51
std[​R​] 8.00 7.37 −1.58 7.93 −0.16
c −0.0041 −0.0047 −0.53 −0.0064 −1.81
R2 0.25 0.18 −0.47 0.25 0.05
​E[R] − 1​ 1.89 1.80 −0.19 1.87 −0.06
​E[​R​​ b​] − 1​ 0.13 0.34 1.26 −0.65 −4.58

UBS survey data
corr[​​PD​t​​​, ​​E​ t​ 

​​ ​​R​t, t+4​​​] 0.79 0.79 −0.08 0.85 0.78

Consumptive volatility
E[​​std​ t​ 

​​ ​​C​ t+1​ 
i ​​ /​​C​ t​ 

i​​] 3.38 4.55
E[​​std​t​​​ ​​C​ t+1​ 

i ​​ /​​C​ t​ 
i​​] 3.23 4.99

Estimates
​g​ 0.0282 0.0282
​δ​ 0.99514 0.99514
​γ​  2.03 

0.0030
2.03

​​σ​μ​​​ —
​​σ​ε, 1​​​ — 0.0018

Notes: The table reports US asset-pricing moments (column 2) using the data sources described in online 
Appendix A1, the moments and t-ratios of the subjective belief model with idiosyncratic transitory belief shocks 
(columns 3 and 4, see equation (47)), and the moments and t-ratios of the subjective belief model with idiosyncratic 
persistent belief shocks (columns 5 and 6, see equation (48)). E[​​std​ t​ 

​​ ​​C​t+1​​​/​​C​t​​​] denotes the unconditional expectation 
of the subjective standard deviation of consumption growth and E[​​std​t​​​ ​​C​t+1​​​/​​C​t​​​] the unconditional expectation of the 
objective standard deviation of consumption growth. The standard deviation of the idiosyncratic belief shocks ​​σ​μ​​​ 
and ​​σ​ε​​​ has been chosen so as to approximately equate subjective and objective standard deviation of consumption 
growth. See Table 3 for a description of the remaining labels used in the first column.
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described in Proposition 1.83 Table 8 reports the outcomes.84 It shows that at con-
ventional significance levels the rational expectations hypothesis can be rejected 
with high likelihood, even for relatively short sample lengths. This is in line with the 
empirical evidence documented in Section II.

IX.  Historical PD Ratio and Survey Evidence

This section shows that the estimated subjective belief model successfully rep-
licates the low-frequency movements of the postwar US PD ratio, as well as the 
available time series of survey expectations. We illustrate this point using the model 
from Table 5, which has been estimated under the restriction that the wage-dividend 
ratio displays close to unit root behavior ( ​p  =  0.999​). This is motivated by the 
fact that estimated models that imply more mean reversion in the wage-dividend 
ratio, say the ones from Table 3, cannot capture the time series behavior of the PD 
ratio after the year 1990. After 1990, the wage-dividend ratio started to persistently 
diverge from a value close to its sample mean of 22 to a value close to 12 at the end 
of the sample period in 2012.

To determine the model fit, we feed the historically observed price growth observa-
tions into the model’s belief updating equation (39), so as to obtain a model-implied 
belief process.85 We then combine this belief series with the historically observed 
wage-dividend ratio to obtain from the model’s equilibrium pricing function the 
model implied prediction for the postwar PD series. Formally, this is done by plug-
ging implied expectations and wage-dividend ratio in equation (38) and backing out 
the corresponding ​PD​ ratio. In doing so, we choose the unobserved price growth 
belief at the start of the sample period (​​m​1946:I​​​) so as to minimize the sum of absolute 
deviations of the model-implied PD ratio from the PD ratio in the data.86

83 We include the small sample bias correction reported in Proposition 1. 
84 Rejection frequencies have been computed from 1,000 random samples of the specified sample length that 

were randomly drawn randomly from a time series of 100,000 simulated model periods, with the first 10,000 
periods being discarded as burn-in. 

85 Since we cannot observe the shocks ​ln ​ε​ t​ 1​​ in (39), we set them equal to 0. Gaps between the model predicted 
and actual PD ratio may thus partly be due to these shocks. 

86 This delivers initial price growth expectations in 1946:I of −1.7 percent. 

Table 8—Rejection Frequencies for the RE Hypothesis (​​H​0​​​: c = c)  
for the Estimated Asset-Pricing Models

Significance 
level

Sample length in quarters

25 50 75 100 150 200

Model from Table 7 1% 0.828 0.944 0.971 0.981 0.984 0.987
  (diagonal matrix) 5% 0.900 0.970 0.981 0.987 0.988 0.990

Model from Table 7 1% 0.779 0.938 0.968 0.975 0.975 0.989
  (efficient matrix) 5% 0.892 0.974 0.986 0.981 0.980 0.991

Note: The reported rejection frequencies are based on the rational expectations test developed 
in Section IIB of the paper and include the small sample bias correction stated in Proposition 1.
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The resulting belief sequence is depicted in Figure 8. Figure 9 graphs the model 
implied PD ratio together with the PD ratio from the data. It reveals that the model 
captures a lot of the low-frequency variation in the historically observed PD ratio. It 
captures particularly well the variations before the year 2000, including the strong 
run-up in the PD ratio from the mid 1990s to the year 2000. The model also predicts 
a strong decline of the PD ratio after the year 2000, but overpredicts the decline 
relative to the data.

The gap after the year 2000 emerging in Figure 9 is hardly surprising, given the 
empirical evidence presented in Figure 4, which shows that the relationship between 
the PD ratio and the expectations implied by equation (13) has shifted upward in 
the data following the year 2000. While we can only speculate about potential rea-
sons causing this shift, the exceptionally low real interest rates implemented by the 
Federal Reserve following the reversal of the tech stock boom and following the 
collapse of the subsequent housing boom may partly contribute to the observed 
discrepancy. This suggests that incorporating the asset-pricing effects of monetary 
policy decisions might improve the model fit. This is, however, beyond the scope of 
the present paper.

Figure 10 depicts the model-implied price growth expectations and the price 
growth expectations from the UBS survey.87 While the model fits the survey data 
rather well, it predicts after the year 2003 considerably lower capital gains expecta-
tions, which partly explains why the model underpredicts the PD ratio in Figure 9 
toward the end of the sample period. While the expectations gap in Figure 10 nar-
rows considerably after the year 2004, this fails to be the case for the PD ratio in 

87 See footnote 35 for how to compute price growth expectations from the UBS survey. 
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Figure 9. Underprediction of expected price growth thus explains only partly the 
deterioration of the fit of the PD ratio toward the end of the sample period.

X.  Robustness Analysis

This section explores the robustness of our main findings to changing key model 
parameters and to using more general price belief systems. The next section stud-
ies the pricing effects of alternative model parameters. Section XB discusses the 
implications of more general price belief systems that incorporate mean-reversion 
of the PD ratio. Finally, Section XC considers the pricing and welfare implications 
of introducing agents who use current price information for updating beliefs.
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A. Model Parameterization

This section studies how the model’s ability to generate boom and bust dynamics 
in stock prices depends on key model parameters. The equilibrium pricing function 
for our baseline parameterization, depicted in Figure 5, allows for self-reinforcing 
stock price boom and bust dynamics because the price dividend ratio increases ini-
tially strongly with capital gain optimism. This section explores the robustness of 
this feature by studying how the equilibrium pricing is affected by the coefficient of 
relative risk aversion (​γ​), the discount factor (​δ​), and the average wage to dividend 
income ratio (​ρ​).

Figure 11 depicts the equilibrium pricing function for alternative parameter 
choices. Each panel plots the pricing function from our baseline parameterization, 
as well as those generated by increasing or decreasing the values for ​γ​ , ​δ​, and ​ρ​.  
Panel A, for example, shows that lowering (increasing) the coefficient of relative 
risk aversion increases (reduces) the hump in the PD function and moves it to the 
left (right), thereby causing asset price booms to become more (less) likely and 
larger in size. Similar effects are associated with increasing (decreasing) the wage to 
dividend income ratio (​ρ​) and with increasing (decreasing) the discount factor ​(δ )​. 
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Overall, Figure 11 shows that the model can produce hump-shaped equilibrium PD 
functions over a fairly wide set of parameter specifications.

B. Generalized Belief System

This section considers a generalized price belief system, which implies that 
investors expect the PD ratio to eventually mean-revert over time. This is motivated 
by the fact that the price belief system (26)–(27) employed in the main part of the 
paper, along with knowledge of the dividend process, does not imply that agents 
expect the log of the ​PD​ ratio to mean revert over time.

We find that the pricing implications of the model do not depend on the expected 
long-run behavior for the PD ratio and that very similar equilibrium pricing func-
tions can be generated by belief systems that imply persistent changes in the PD 
ratio but where the PD ratio is ultimately mean reverting.

It is important to note that the survey data provide little support for mean-revert-
ing price growth expectations over the available forecast horizons and thus for mean 
reversion in the expected PD ratio. In particular, the last four rows in Table 1A show 
that the regression coefficient ​​c ˆ ​​ obtained from regressing the expected 10 year ahead 
capital gain forecasts from the Shiller survey on the PD ratio is more than 10 times 
larger than the corresponding regression coefficient obtained from regressing the 
one year ahead forecast on the PD ratio. The expected annualized ten year price 
growth thus reacts stronger to movements in the PD ratio than the expected one year 
price growth. This shows that one should incorporate only a mild degree of mean 
reversion into subjective price growth beliefs, as the belief system would otherwise 
become inconsistent with the survey evidence.

To analyze the effects of mean reversion in price beliefs, we now assume that 
investors perceive prices to evolve according to

(49)	​ ln ​P​t+1​​  =   ln ​β​t+1​​ + ln ​P​t​​ + ​(1 − ​η​PD​​)​ ​(ln PD − ln ​P​t​​ / ​D​t​​)​ + ln ​ε​t+1​​,

(50)	 ln ​β​t+1​​  =  (1 − ​η​β​​ ) ln ​β​​ D​ + ​η​β​​ ln ​β​t​​ + ln ​ν​t+1​​ , ​

where ​ln PD​ denotes the perceived long-run mean of the log PD ratio 
and ​​η​PD​​  ∈  [ 0, 1 ] ,​ ​​η​β​​  ∈  [ 0, 1 ]​ are given parameters. For ​​η​PD​​  = ​ η​β​​  =  1​ these 
equations deliver the benchmark price belief system (26)–(27) studied in the main 
part of the paper.88 For ​​η​β​​  <  1​ , equation (50) implies that agents expect mean 
reversion in the persistent price growth component ​ln ​β​t​​​ toward the mean growth 
rate of dividends (​ln ​β​​ D​​); if in addition ​​η​PD​​  <  1​ , equation (49) implies that agents 
expect ​ln ​P​t​​ / ​D​t​​​ to eventually return to its long-run mean ​ln PD​.89

Suppose that ​​η​β​​  <  1​ and ​​η​PD​​  <  1​ , that agents are optimistic about future cap-
ital gains, i.e., they believe ​​β​t​​ ​ to be above ​​β​​ D​​ , and that agents observe a PD ratio 
above its long-run mean (​​P​t​​ / ​D​t​​  >  PD​). Provided ​​η​β​​​ and ​​η​PD​​​ are sufficiently close 
to 1, equations (49)–(50) imply that agents expect a fairly persistent boom in the PD 
ratio, as is the case with the benchmark belief system (26)–(27). Yet, unlike with the 

88 As before, we assume that agents have rational expectations about the dividend and wage income processes. 
89 This can be seen by subtracting (15) from (49). 
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benchmark, they also expect a price bust further down the road, because the PD ratio 
is expected to eventually return to its long-run value.

Equations (49) and (50) jointly imply that optimal belief updating about 
the unobserved persistent stock price growth component ​ln ​β​t​​​ is described by 
a generalized version of equation (39), which states that the posterior mean 
​ln ​m​t​​  ≡ ​ E​​ ​​ (​ln ​β​t​​ | ​P​​ t​ )​ in steady state evolves according to90

(51)  ​  ln ​m​t​​  =  (1 − ​η​β​​ ) ln ​β​​ D​ + ​η​β​​ ln ​m​t−1​​

	 + g​(​ 
ln ​P​t−1​​ − ln ​P​t−2​​ − ln ​m​t−1​​​   − (1 − ​η​PD​​ )​(ln PD − ln ​P​t−2​​ / ​D​t−2​​)​

​)​ + g ln ​ε​ t​ 1​ .​

Using the generalized belief and updating equations, Figure 12 depicts the impact of 
different perceived values for ​​η​PD​​​ and ​​η​β​​​ on the equilibrium pricing function when 
setting the perceived long-run mean ​ln  PD​ in (49) equal to the perfect foresight 
value of the ​PD​ ratio.91 Panel A plots the effects of decreasing ​​η​PD​​​ below one, while 
keeping ​​η​β​​  =  0.9999​. For the considered values of ​​η​PD​​​ , agents expect the log PD 
ratio to mean revert by 1 percent, 2 percent, or 3 percent per year toward its long-run 
mean (​ln PD​). The figure also plots the outcome when there is virtually no mean 
reversion ​​(​η​PD​​  =  0.9999)​​. Panel A shows that by introducing mean reversion, one 
pushes the peak of the equilibrium PD ratio to the right and also lowers its height. 
The shift to the right occurs because agents only expect a persistent boom in the 
PD ratio if the increase in the PD ratio implied by the persistent growth component ​
(ln ​β​t​​ )​ outweighs the mean reversion generated by the negative feedback from the 
deviation of the PD from its long-run value in equation (49). The downward shift 
in the PD ratio occurs because mean reversion causes investors to expect lower and 
eventually negative returns sooner.

Panel B in Figure 12 depicts the effects of decreasing ​​η​β​​​ below 1, while keep-
ing ​​η​PD​​  =  0.9999​. As before, we consider values for ​​η​β​​​ that imply virtually no 
mean reversion and mean reversion by 1 percent, 2 percent, and 3 percent per year 
toward the long-run value (​ln ​β​​ D​​ ). The panel shows that the pricing implications are 
very similar to those of decreasing ​​η​PD​​​.

Finally, panel C depicts the effects of jointly decreasing ​​η​β​​​ and ​​η​PD​​​. The pricing 
implication of such simultaneous changes turn out to be considerably stronger, com-
pared to the case where only one of the persistence parameters decreases. Figure 13 
illustrates why this sharp difference occurs. It graphs the expected path of the PD 
ratio for different parameter combinations ​​(​η​PD​​ , ​η​β​​)​​.92 If either ​​η​PD​​​ or ​​η​β​​​ are close 
to 1, agents expect a rather prolonged stock price boom that is expected to revert 
only in the distant future. Expected stock returns are thus high for many periods 

90 Since equation (49) only introduces an additional observable variable into (26) and equation (50) only adds 
a known constant and known mean reversion coefficient relative to (27), the arguments delivering equation (39) as 
optimal Bayesian updating directly generalize to equation (51). 

91 We assume that ​​σ​ ε​ 2​​ and ​​σ​ ν​ 2​​ assume the same values as in the baseline specification, so that the gain parameter 
also remains unchanged at ​g  =  0.02515​. This parameterization makes sure that—for the values of ​​η​β​​​ and ​​η​PD​​​ 
considered below—the perceived standard deviation for stock price growth implied by equations (50)–(49) approx-
imately matches the standard deviation of stock price growth in the data. 

92 The figure assumes that the equilibrium PD ratio initially equals ​P​D​0​​  =  150​ , i.e., it is above its long-run 
value, and that agents are mildly optimistic about future capital gains with ​ln ​m​0​​  =  1%  >  ln ​β​​ D​​. 
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before they turn negative. This differs notably from the case where both persistence 
parameters fall significantly below one (​​η​PD​​  = ​ η​β​​  =  0. ​97​​ ​ 

1 _ 4 ​​​). The expected stock 
price boom is then much smaller and considerably more short-lived, so that returns 
are lower and expected to become negative earlier. From the discussion following 
equation (42), it should be clear that the implied path for expected returns then can-
not sustain a high PD ratio as an equilibrium outcome.

Summing up, the model continues to give rise to hump-shaped equilibrium pric-
ing functions, even if agents ultimately expect mean reversion in the PD ratio, pro-
vided the generalized belief system implies that agents expect elevated capital gains 
to be sufficiently persistent.

C. Current Price Information for Belief Updating

The baseline model specification postulates a belief structure that makes it sub-
jectively optimal for agents to update beliefs ​​m​t​​​ based on price information up to 
period ​t − 1​ only, see equation (39). The present section demonstrates that lagged 
belief updating is also objectively optimal for agents: belief updating with current 
price observations robustly generates lower experienced utility for agents.93 In this 
sense, the baseline specification with lagged belief updating can be interpreted as 
the limiting outcome of a setting in which agents choose—based on experienced 
utility—whether to use current prices for updating beliefs.

To show that lagged updating generates objectively higher utility, we consider an 
extended model setup where a share ​α  ∈  [ 0, 1 ]​ of investors updates beliefs using 
current price growth information, with the remaining share ​1 − α​ using lagged price 
growth information.94 While the beliefs of lagged updaters are predetermined, the 
beliefs of current updaters vary simultaneously with the stock price ​​P​t​​​. The latter 
creates a potential for multiple market-clearing equilibrium price and belief pairs.

To assess the implications of simultaneous belief updating, we consider the esti-
mated benchmark parameters from Table 3 (diagonal matrix) and different values 
for ​α  ∈  [ 0, 1 ]​. To select between equilibrium prices in periods where multiple 
equilibrium price exist, we consider two alternative selection rules.95 The first rule 
selects the equilibrium price that is closest to the previous period’s market-clearing 
price. The second selection rule selects the price that is furthest away from the pre-
vious market-clearing price.

Table 9 reports the expected discounted utility of agents that use current and 
lagged belief updating for different values of ​α​ and for the two considered selection 
rules.96 It shows that independently of the selection rule and independently of the 
share of current updaters ​α​ , utility of lagged updaters always exceeds that of current 

93 This finding is in line with results reported in Adam et al. (2015), who show that agents whose beliefs are 
more reactive to price growth observations tend to do worse than agents whose beliefs display less sensitivity. 

94 Updaters using current price information update beliefs according to equation (39), but replace ​ln ​P​t−1​​ /ln ​P​t−2​​​  
by ​ln ​P​t​​ /ln ​P​t−1​​​ on the right-hand side. 

95 In the vast majority of cases, we find three market-clearing equilibrium prices, conditional on there being 
multiplicity. In less than 0.1 percent of the periods with multiplicities we find five market-clearing prices. 

96 The table reports the unconditional expectation of discounted consumption utility using the objective dis-
tribution for consumption, as realized in equilibrium. Online Appendix A15 reports the associated asset-pricing 
moments. 
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updaters. Current updaters thus have an incentive to switch to lagged updating, i.e., 
to the setting considered in our baseline specification.

XI.  Conclusions

We present a model with rationally investing agents that gives rise to market 
failures in the sense that the equilibrium stock price deviates from its fundamental 
value. These deviations take the form of asset price boom and bust cycles that are 
fueled by the belief-updating dynamics of investors who behave optimally given their 
imperfect knowledge about the behavior of stock prices. Optimal belief updating also 
causes investors’ subjective capital gain expectations to comove positively with the 
price-dividend ratio, consistent with the evidence available from investor surveys.

As we argue, these features cannot be replicated within asset-pricing models that 
impose rational price expectations. Moreover, the developed statistical tests show 
that the behavior of survey return expectations is incompatible with the rational 
expectations hypothesis.

Taken together, this suggests that asset price dynamics are to a large extent influ-
enced by investors’ subjective optimism and pessimism, i.e., the asset price fluctu-
ations observed in the data are to a large extent inefficient. The inefficiency arises 
because equilibrium stock prices are determined by the sum of dividends that is 
discounted using the stochastic discount factor implied by investors’ subjective con-
sumption plans, which are influenced by investors’ subjective price beliefs. This 
differs from the standard setup under RE, where stock prices equal the sum of divi-
dends discounted by the objective stochastic discount factor.

Due to the simplicity of the setup, these inefficient price fluctuations do not yield 
adverse welfare implications in our baseline model.97 For models incorporating 
investor heterogeneity, e.g., the extension presented in Section VIIIB, or models 

97 This is true if one evaluates welfare using ex post realized consumption. 

Table 9—Expected Utility of Current and Lagged Belief Updaters

Closest price Furthest price

Share of current Lagged Current Lagged Current
updaters (α) updaters updaters updaters updaters

0.0 −4.02 −4.07 −4.02 −4.07
0.1 −4.02 −4.06 −4.02 −4.06
0.2 −4.01 −4.06 −4.01 −4.06
0.3 −4.01 −4.05 −4.01 −4.06
0.4 −4.01 −4.05 −4.00 −4.06
0.5 −4.00 −4.05 −3.99 −4.06
0.6 −4.00 −4.04 −3.98 −4.06
0.7 −3.99 −4.04 −3.97 −4.06
0.8 −3.99 −4.03 −3.89 −4.11
0.9 −3.97 −4.03 −3.39 −4.24
1.0 −3.95 −4.02 −2.46 −4.02

Notes: The table reports the objectively expected utility for agents that use current and one period 
lagged prices to update beliefs for different equilibrium selection rules, as described in Section 
XC, and different shares α of current updaters. Since u(C ) < 0, expected utility is always nega-
tive. The model is parameterized using the estimated parameters from Table 3 (diagonal matrix).
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featuring endogenous output or stock supply processes, stock price fluctuations may 
have significant effects on welfare. Exploring these within a setting that generates 
quantitatively credible amounts of asset price fluctuations appears to be an interest-
ing avenue for further research. Such research will in turn lead to further important 
questions, e.g., whether policy can and should intervene with the objective to stabi-
lize asset prices.

In deriving our results, we assumed that all agents in the economy become more 
(or less) optimistic when observing capital gains above (or below) their expecta-
tions. While the quantitative model predictions survive when investors are heteroge-
neous in the degree to which they respond to observed capital gains (see Adam et al. 
2015), it appears of interest to assess the potential price impact generated by spec-
ulators with rational price expectations. While rational speculators can contribute 
to price destabilization, as in De Long et al. (1990), they may also help with price 
stabilization, as in Barberis et al. (2015). Exploring this issue further, especially in 
connection with the limits to arbitrage emphasized in Shleifer and Vishny (1997),  
appears to be a fruitful avenue for further research.
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