Covid-19 Coronavirus and Macroeconomic Policy

Luca Fornaro and Martin Wolf*

This version: 21st March 2020
First version: 3rd March 2020

As we write, the Covid-19 coronavirus is spreading throughout the globe. Besides its impact on public health, this coronavirus outbreak is likely to have significant economic consequences. The consensus is that the virus will cause a negative supply shock to the world economy, by forcing factories to shut down and disrupting global supply chains (OECD, 2020). But how deep and persistent is this supply disruption going to be? Will aggregate demand be affected? What is the appropriate monetary policy response? What about fiscal policy? These questions are currently at the center of a heated debate.

Tackling these questions requires taking into account a range of scenarios. In this short note, we consider the (hopefully pessimistic) possibility that the supply disruption caused by Covid-19 will be severe and persistent, potentially lasting beyond the end of the epidemic. To be clear, we have no reasons to believe that this scenario is more plausible than other - more optimistic - ones. It might very well be, in fact, that the virus will end up causing a relatively mild and short-lived global recession, followed by a V-shaped recovery (Wren-Lewis, 2020). Given the huge uncertainty surrounding the future evolution of the epidemic, however, it is useful to workout the macroeconomic implications of more pessimistic scenarios.

To do so, we employ a very simple analytic framework. We highlight three results. First, the spread of the virus might depress global demand. Second, a supply-demand doom loop might take place, amplifying the supply disruption directly caused by the virus. Third, this epidemic might make the global economy vulnerable to stagnation traps, that is episodes of low growth and high unemployment driven by pessimistic animal spirits. While monetary easing can help mitigate the drop in global demand, our analysis suggests that aggressive fiscal policy interventions to support investment will be needed to push the global economy out of stagnation.

Before starting, one disclaimer is in order. Both the model and the results that follow draw heavily on existing works. In particular, the results in Sections 1 and 2 are based on Galí (2009) and Lorenzoni (2009). Sections 3 and 4 are instead based on Benigno and Fornaro (2018). The purpose of this note is to apply these existing insights to the coronavirus epidemic.

*Luca Fornaro: CREI, Universitat Pompeu Fabra, Barcelona GSE and CEPR; LFornaro@crei.cat. Martin Wolf: University of Vienna and CEPR; ma.wolf@univie.ac.at. Luca Fornaro acknowledges financial support from the European Research Council Starting Grant 851896 and the Spanish Ministry of Economy and Competitiveness, through the Severo Ochoa Programme for Centres of Excellence in R&D (SEV-2015-0563).
1 A simple framework

We take as our starting point a stripped-down version of the standard New Keynesian model (Galí, 2009). For simplicity’s sake, we consider the global economy as a whole, and thus ignore asymmetries across countries.

Time is discrete and indexed by \(t \). Global output \(y_t \) is increasing in employment \(l_t \) and labor productivity \(a_t \)

\[
y_t = l_t + a_t.
\]

(1)

There is a maximum - possibly time-varying - level of employment \(\bar{l}_t \), which also corresponds to the efficient level of employment.\(^1\) When \(l_t = \bar{l}_t \) the economy operates at full employment and output is equal to potential, while when \(l_t < \bar{l}_t \) there is some involuntary unemployment and output is below potential. We denote the growth rate of labor productivity by \(g_t \equiv a_t - a_{t-1} \).

As in the Keynesian tradition, we assume that output and employment are determined by aggregate demand. In turn, aggregate demand depends on expectations of future output \(y_{t+1} \) and on the real interest rate \(r_t \). First, demand in the present is increasing in expectations of future output. Consumers, the reason is, are more willing to spend in the present if they anticipate a higher future income. Second, a lower interest rate boosts aggregate demand, for instance by encouraging expenditure financed by borrowing. These effects are captured by the expression

\[
y_t = -r_t + y_{t+1},
\]

(2)

which is similar to the standard intertemporal substitution (IS) equation of the New Keynesian model.

The interest rate is determined by monetary policy. More precisely, monetary policy controls the nominal rate \(i_t \), while agents base their spending decisions on the real rate \(r_t \). The two rates are related by the Fisher equation \(i_t = r_t + \pi_{t+1} \), where \(\pi_{t+1} \) denotes expected price inflation. For the moment, we assume that inflation is fixed and equal to \(\bar{\pi} \), so that the central bank effectively controls the real interest rate.\(^2\) We will revisit this assumption later on. Moreover, we assume that the central bank sets the policy rate according to

\[
i_t = \bar{i} + \phi(l_t - \bar{l}_t),
\]

(3)

where \(\bar{i} \) and \(\phi \) are two positive constants. Under this rule the central bank aims at stabilizing output around its potential level, by cutting the policy rate in response to falls in employment.

\(^1\)See, for instance, Benigno and Fornaro (2018) for the microfoundations behind this assumption. There agents experience no disutility from working, and can supply to the market up to \(\bar{l}_t \) units of labor. Involuntary unemployment is possible due to the presence of nominal wage rigidities.

\(^2\)All it takes for our results is some stickiness in nominal prices or wages. The assumption of constant inflation corresponds to the limit in which prices are fully rigid.
Substituting (1) and (3) into (2) gives

$$l_t(1 + \phi) = -\bar{\bar{i}} + \bar{\pi} + l_{t+1} + g_{t+1} + \phi l_t.$$ \hfill (AD)

This AD equation describes the demand side of the economy.

\section{Impact of coronavirus on aggregate demand}

We now need take a stance on how to model the coronavirus shock. Surely, the epidemic is inducing a fall in the efficient level of employment. The reason is that many occupations require in-person social interactions, which facilitate the spread of the virus. Limiting employment, by imposing an economic lockdown, is thus desirable to mitigate the impact of the virus on public health. These considerations can be captured through a fall in \bar{l}_t. This effect, however, is not the focus of this note. We will thus abstract from it by assuming a constant level of efficient employment ($\bar{l}_t = \bar{l}$ for all t).

Besides its impact on the efficient level of employment, the virus - and the associated lockdown - is also likely to generate a drop in the future productive capacity of the economy, by making firms scrap their investment plans, companies going bankrupt and destroying workers-firms matches. All these effects produce a long-lasting supply disruption, which might very well extend far beyond the end of the epidemic. In the model, this can be captured by a persistent drop in labor productivity growth. It is analytically convenient to focus on the limit in which the fall in productivity growth caused by the coronavirus is permanent. This is, of course, an unrealistic assumption. But our results generalize to cases in which the drop in productivity growth is persistent, without being permanent.

Since g_t is constant, all the other variables are also constant over time. For instance, the AD equation becomes

$$\phi(l - \bar{l}) = -\bar{\bar{i}} + \bar{\pi} + g,$$ \hfill (AD)

where we have removed time subscripts to simplify notation. Figure 1 shows the AD schedule in the $l - g$ space. The curve is upward sloped, because lower productivity growth is associated with expectations of lower future income, and thus with weaker aggregate demand. Lower aggregate demand, in turn, depresses output and employment. As shown in the figure, for given g this equation determines employment l.

Now imagine that we start from an equilibrium characterized by full employment ($l = \bar{l}$). Suppose that the coronavirus epidemic causes a (previously unexpected) fall in g to $g' < g$. The outcome is illustrated by the left panel of Figure 1. The fall in productivity growth translates into lower aggregate demand. The central bank reacts by cutting the policy rate, but not enough to prevent unemployment from arising. The result is a drop in employment below its efficient level ($l' < \bar{l}$). In this simple model, therefore, the negative supply shock triggered by the coronavirus gives rise to a fall in demand and involuntary unemployment. The crucial assumption behind this
result is that the supply disruption is persistent, so as to induce agents to revise downward their expectations of future income.\(^3\)

What does it take to restore full employment? The central bank needs to inject further monetary stimulus, i.e. it needs to lower \(\bar{i}\). Graphically, this corresponds to a rightward shift of the AD curve. If the monetary stimulus is strong enough, full employment is restored, as illustrated by the right panel of Figure 1. This simple model thus lends support to the idea that central banks might need to respond to the Covid-19 outbreak by easing monetary policy.

In reality, however, restoring full employment through monetary stimulus might not be that easy. First, social-distancing is impairing households’ ability to spend. A reduction in interest rates might thus have a much weaker impact on demand, compared to normal times.\(^4\) Second, interest rates are currently very low. This reduces central banks’ ability to cut policy rates, because of the effective lower bound constraint. We will go back to this point later on.

Let us now spend a few words on inflation. Suppose that the prices set by firms are increasing in the marginal cost of production. Higher wages, therefore, push up prices by increasing marginal costs. Higher labor productivity, instead, lowers prices by reducing the marginal cost of production. We can then write price inflation \(\pi_t\) as

\[
\pi = \pi^w - g,
\]

where \(\pi^w\) denotes nominal wage inflation. Let us also assume the existence of a wage Phillips curve \(\pi^w = \xi (l - \bar{l})\), where \(\xi > 0\) so that wage inflation is positively related to employment. Inflation is

\(^3\)This effect is well known from the literature on news shocks (e.g., Lorenzoni, 2009).

\(^4\)To capture this effect, we can replace equation (2) with

\[
y_t = -\sigma \pi_t + y_{t+1},
\]

where \(\sigma > 0\) determines the sensitivity of aggregate demand to changes in the interest rate. Social distancing would then lead to a reduction in \(\sigma\).
then determined by

$$\pi = \xi (l - \bar{l}) - g.$$ \hfill (5)

Will Covid-19 lead to higher or lower inflation? Clearly, the answer is it depends. Lower productivity growth, in fact, tends to push inflation up. This is the classic notion that negative supply shocks are inflationary. But lower employment pushes wage inflation down. This effect points toward lower price inflation. The relative strength of these two effects depends on the slope of the wage Phillips curve. It is then hard, a priori, to say whether the coronavirus outbreak will lead to higher or lower inflation. As in the standard New Keynesian literature, however, the model suggests that central banks will face a trade off between stabilizing employment at its efficient level and inflation.

3 The supply-demand doom loop

So far, we have taken the rate of labor productivity growth as an exogenous variable. In reality, firms can increase their labor productivity by investing to increase their capital stock, or to develop innovations that improve the quality of their products. It is reasonable to assume that firms’ investment decisions depend on aggregate demand. First, when demand is strong the return from investment tends to be high. Weak aggregate demand, consequently, depresses firms’ incentives to invest. Moreover, due to financial frictions, many firms have to rely on internal funds to finance investment. Weak aggregate demand reduces firms’ operating profits and erodes their net worth, forcing financially-constrained firms to scrap their investment plans. These effects give rise to a positive relationship between investment - and so labor productivity growth - and aggregate demand.\(^5\)

These effects can be captured through a microfounded model, as done by Benigno and Fornaro (2018). Here, instead, we simply assume that productivity growth evolves according to

$$g = \chi l + \bar{g},$$ \hfill (GG)

where χ and \bar{g} are two positive constants. The term χl captures the endogenous component of productivity growth. The rationale behind this term is that higher aggregate demand, which is associated with higher employment, leads to higher investment and faster productivity growth. \bar{g}, instead, captures all the factors that can affect productivity independently of demand - such as the spread of the Covid-19 coronavirus and the associated lockdown. The GG schedule summarizes the supply side of our simple model.

Figure 2 plots the AD and GG schedules. The GG schedule is, for reasons explained above, upward sloping. The equilibrium is thus determined by the intersection of two upward sloped curves. As usual, this signals the presence of amplification effects.

\(^5\)There are other channels through which a spell of weak aggregate demand can produce a drop in future potential output. For instance, weak aggregate demand might generate a destruction in workers-firms matches. Due to search and matching frictions, it might not be easy to restore these matches quickly once demand recovers.
Let’s now go through the macroeconomic impact of a negative supply shock triggered by the coronavirus spread, which we capture by a fall in \bar{g}. As shown in Figure 2, the fall in \bar{g} makes the GG curve shift toward the right. If monetary policy holds \bar{i} constant, the new equilibrium features lower productivity growth and lower employment.

What is interesting, is that now a supply-demand doom loop takes place. As before, the initial negative supply shock depresses aggregate demand. But now lower demand induces firms to cut back on their investment, which generates an endogenous drop in productivity growth and future potential output. Lower productivity growth, in turn, induces a further cut in demand, which again lowers investment and growth. This vicious spiral, or supply-demand doom loop, amplifies the impact of the initial supply shock on employment and labor productivity growth.

Now monetary interventions aiming at sustaining demand have a multiplier effect - because they reverse the supply-demand doom loop. Suppose that the central bank eases monetary policy, by lowering \bar{i}. This intervention increases aggregate demand. Moreover, higher demand induces firms to increase investment. In turn, this sustains consumers’ expectations of future income, leading to a further rise in demand, and so on. Under this scenario, a monetary expansion has a particularly large impact on employment and productivity, because it counteracts the supply-demand doom loop.

Unfortunately, as we argued above, central banks might be able to impart only a limited amount of monetary stimulus to the economy. But the supply-demand doom loop can be reversed also through appropriate fiscal policy interventions. Imagine that governments can implement policies to sustain investment, so that now the GG equation becomes

$$g = \chi l + \bar{g} + s,$$

where s captures government policies aiming at increasing investment. A higher s, for instance, can be interpreted as a rise in subsidies to firms’ investment, an increase in public investment, public credit provision to financially-constrained firms or even subsidies to prevent the breakup of workers-firms matches. All these policies, in fact, lead to higher aggregate investment - and
therefore higher labor productivity growth - for given aggregate demand.

Graphically, a rise in s generates an upward shift of the GG curve - leading to higher productivity growth and employment. The interesting bit is that these fiscal interventions, which act on the supply side of the economy, also affect aggregate demand. The reason should be clear by now. Higher investment boosts expectations of future growth and income, leading agents to increase spending in the present. In turn, higher aggregate demand leads to a further rise in investment and productivity growth, etc. The bottomline is that fiscal interventions supporting investment reverse the supply-demand doom loop, and so they trigger a positive multiplier effect on economic activity.

4 Animal spirits and stagnation traps

We have so far sidestepped a fundamental constraint on monetary policy, given by the effective lower bound on the interest rate. As we will see, this is no small omission. Let us now assume that the central bank cannot push the interest rate below i_l, so that

$$i = \max (\bar{i} + \phi(l - \bar{l}), i_l).$$

(6)

In this case, if demand is weak enough the interest rate hits the lower bound and the economy experiences a liquidity trap. The AD equation now becomes

$$\max (\bar{i} + \phi(l - \bar{l}), i_l) = \bar{\pi} + g.$$

(AD)

As shown in the left panel of Figure 3, the AD equation now exhibits a kink, and it becomes horizontal for values of l low enough to trigger a liquidity trap.

As before, imagine that the coronavirus outbreak induces a downward shift of the GG curve, from GG to GG'. As drawn in the figure, there are now two intersections between the AD and the GG' curve. This means that two equilibria are possible. The first equilibrium, corresponding to the point (l', g'), has already been described in the previous section. The second equilibrium, corresponding to the point (l'', g''), is new. In this equilibrium the economy is stuck in a liquidity trap ($i = i_l$), and both growth and employment are depressed ($l'' < l'$ and $g'' < g'$). This second equilibrium can then be thought of as a stagnation trap (Benigno and Fornaro, 2018). Notice that nothing fundamental determines which equilibrium prevails. In fact, agents can coordinate their expectations on either of the two equilibria. Therefore, pessimistic animal spirits can push the economy into a stagnation trap.

Now the coronavirus shock not only triggers a supply-demand doom loop, it also places the economy in a danger zone in which animal spirits and agents’ expectations can affect employment and productivity growth. To see how this can happen, imagine that agents become pessimistic about future growth. Due to the zero lower bound, the central bank cannot counteract the associated drop in demand. As a result, employment and economic activity drop. Firms react by
Figure 3: Stagnation traps and fiscal policy.

cutting investment, which negatively affects productivity growth. Initial pessimistic expectations of weak growth thus become self-fulfilling. Importantly, this self-fulfilling feedback loop can take place only if the fundamentals of the economy are sufficiently weak (notice that the equilibrium is unique before the coronavirus causes a drop in \bar{g}). The coronavirus epidemic, therefore, can open the door to expectation-driven stagnation traps precisely by weakening the growth fundamentals of the economy.

Which policy interventions can prevent a stagnation trap from taking place? There is little that conventional monetary policy can do, since the policy rate is constrained by the zero lower bound. Luckily, fiscal policy - and in particular policies that sustain investment - can be of help. Suppose that the government reacts to the coronavirus outbreak by increasing s. As illustrated by the right panel of Figure 3, this policy induces an upward shift of the GG curve, from GG$'$ to GG$''$. If this shift is large enough, the stagnation trap equilibrium disappears. In economic terms, this means that only a sufficiently aggressive fiscal intervention can rule out stagnation traps. A timid intervention, in fact, will not do the job (think about a small upward shift of the GG curve).

Taking stock, this coronavirus outbreak might cause a persistent supply disruption, which might last far longer than the epidemic itself (and the associated economic lockdown). We show that, in this case, the spread of the virus might cause a demand-driven slump, give rise to a supply-demand doom loop, and open the door to stagnation traps induced by pessimistic animal spirits. Monetary policy is likely to be insufficient in mitigating the slump induced by the coronavirus shock. Instead, aggressive fiscal policy interventions to support investment - and more broadly future productivity capacity - can play a key role in sustaining employment and growth, by reversing the supply-demand doom loop. This is especially true if governments will need to jumpstart their economies out of stagnation traps driven by pessimistic animal spirits.\footnote{Of course, financing a large fiscal stimulus package represents a difficult challenge for governments. While we do not address this issue here, our analysis suggests that fiscal interventions to stimulate investment are likely to trigger positive multiplier effects on economic activity. Taking into account these effects is important to design optimal fiscal packages.}

8
We conclude by reiterating that in this note we have focused on a pessimistic scenario. Hopefully, the coronavirus will cause just a short-lived negative supply shock. In this case, agents' expectations about future growth will not be greatly affected, and the impact on aggregate demand will be small. But unfortunately, at present we cannot rule out more pessimistic outcomes, in which the supply disruption caused by the virus is going to be severe and protracted. If this possibility materializes, this simple model suggests that drastic policy interventions - both monetary and fiscal - might be needed to prevent this negative supply shock from severely affecting employment and productivity.

References

