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Abstract

This paper develops a theory of the balance sheet channel that places a central em-

phasis on the liquidity of secondary markets for macro-contingent claims. We show

that the presence of dispersed information and imperfect competition in secondary mar-

kets, interacted with financial constraints, results in mispricing and misallocation of

aggregate risk, distorts aggregate investment, and exacerbates asset price and output

volatility. The magnitude of balance sheet amplification effects becomes endogenously

tied to the severity of market frictions, which likely vary over time and across economies.

The laissez-faire equilibrium is constrained inefficient due to a novel externality originat-

ing from rent-extracting behavior of agents in secondary markets. Optimal corrective

policy boosts secondary market liquidity through subsidies to trade in macro-contingent

claims, which enhances aggregate risk-sharing and stabilizes the business cycle.
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1 Introduction

The global recession of the last decade has once again underscored the importance of financial

market imperfections in the amplification and propagation of economic shocks. We witnessed

how the concentration of aggregate (e.g., real-estate) risks on the balance sheets of leveraged

agents, combined with the malfunctioning of secondary markets where such risks could be

traded (e.g., MBS), allowed even small disturbances to be magnified into a full-blown finan-

cial crisis. Although the macroeconomics literature on the balance sheet channel has long

recognized that concentrated risks may give rise to powerful feedback effects, it is less well

understood what market frictions may prevent aggregate risks from being shared more widely

in the population.1 Answering this question is imperative not only for understanding the

origins of economic fluctuations, but also for the design of optimal corrective policy.

In light of this, we develop a theory of the balance sheet channel, which places a central

emphasis on the liquidity of secondary markets for macro-contingent claims. We show that dis-

persed information and imperfect competition in these markets –which we term information-

trading frictions– can result in mispricing and misallocation of aggregate risk, distort aggregate

investment, and exacerbate asset price and output volatility. Our theory links the strength

of balance sheet amplification effects to the severity of information-trading frictions, which

likely vary across time, markets and economies. We uncover a novel source of (constrained)

inefficiency of laissez-faire equilibrium that originates from rent-extracting behavior of agents

in secondary markets. We characterize the optimal corrective policy and find that, in con-

trast to the more conventional macro-prudential policies, it aims to boost secondary market

liquidity, which enhances risk-sharing and stabilizes the business cycle.

We build upon a canonical framework of the balance sheet channel in the spirit of Kiyotaki

and Moore (1997). Financially constrained entrepreneurs (borrowers) undertake productive

long-term projects and finance them by issuing claims to investors (lenders). The cashflows of

entrepreneurs’ projects are exposed to an aggregate shock that may generate fluctuations in

entrepreneurs’ net worth, which in turn trigger liquidations of productive capital, destabilizing

the prices of capital and aggregate output. Crucially, the extent of such net worth fluctuations

depends on the type of claims with which entrepreneurs choose to finance their projects, i.e.,

on the allocation of aggregate risk between entrepreneurs and investors.

At the center of our model is the investors’ desire for liquidity; namely, due to idiosyncratic

1Balance sheet channel broadly refers to feedback effects between the health of borrowers’ balance sheets
(e.g., net worth) and the general economic activity (e.g., asset prices, output). See the seminal papers by
Bernanke and Gertler (1989) and Kiyotaki and Moore (1997), and some recent contributions by He and
Krishnamurthy (2011) and Brunnermeier and Sannikov (2014). With a few exceptions, much of the literature
on the balance sheet channel simply assumes that financial markets for trading aggregate risks are absent.
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liquidity needs, investors value the option to re-trade their claims in secondary markets. These

markets, however, are prone to information-trading frictions. We introduce an information

friction by supposing that prior to trade in secondary markets investors observe dispersed

private signals about the aggregate state of the economy. We introduce a trading friction by

supposing that secondary markets are imperfectly competitive: an investor who wants to re-

trade his claims can do so only with finitely many other investors. We treat these frictions as

primitive features of our economy, and we motivate them further below. As we discuss next,

the interaction of these information-trading frictions with entrepreneurial financial constraints

are a crucial determinant of how aggregate risk is priced and allocated in the economy.

To fix ideas, we begin our analysis by considering a useful benchmark economy, in which

information-trading frictions are shut down. As secondary markets are now frictionless, the

claims issued by entrepreneurs are always priced fairly and, as a result, aggregate risk is

always allocated efficiently among all agents, i.e., there is full risk-sharing. Even though overall

economic activity may be depressed due to financial constraints, entrepreneurs manage to fully

insulate their net worth from fluctuations through the issuance of state-contingent claims. This

endogenously shuts down the balance sheet channel. Though stark, this benchmark provides

a clear illustration of how the agents’ ability to trade contingent claims in frictionless markets

can mute the impact of aggregate shocks on economic activity. This point has also been made

by Krishnamurthy (2003) and, more recently, by Di Tella (2017).

We then turn to the economy of our interest, in which secondary markets suffer from

information-trading frictions. In this economy, the pricing and allocation of claims in sec-

ondary markets affects how investors value the claims issued by entrepreneurs ex-ante. In

particular, “less liquid” claims are less attractive to issue as investors demand a compensation

for holding such claims. One of this paper’s contributions is to show that, in the presence of

information-trading frictions, claims that are more contingent on aggregate states are effec-

tively less liquid; moreover, the required compensation associated with such “illiquidity” is de-

termined in general equilibrium. It is worth noting that typical asymmetric-information-based

explanations for why the provision of state-contingent claims may be limited (e.g., Hölmstrom

(1979), Townsend (1979), Myers and Majluf (1984)) do not really apply to aggregate states:

first, atomistic agents cannot influence aggregate outcomes, ruling out moral-hazard-based

theories; and, second, it is unlikely that sellers of claims have exclusive access to information

about aggregate variables, ruling out adverse-selection-based theories.

We employ a mechanism design approach and allow each investor to design the optimal

trading arrangement by which to re-sell his claims in secondary markets; that is, each investor

decides the payments to collect from and the claims to allocate to buyers, i.e., other investors

who want to buy claims. Due to information-trading frictions, the investor knows that as a
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seller he will be faced with finitely many buyers who have dispersed signals about the aggre-

gate state. We show that state-contingent claims (and thus aggregate risks) are systematically

mispriced and misallocated in secondary markets, despite the optimal design of trading ar-

rangements. Intuitively, the interaction of information dispersion with trading frictions gives

each buyer of claims some market power over his private information. This allows the buyers

to extract rents from the sellers, but only when the traded claims are contingent on the aggre-

gate state, as only then are the buyers’ private signals useful for valuing them. By designing

optimal trading arrangements, investors minimize but cannot eliminate these rents.

A key tension arises in equilibrium. On the one hand, risk-neutral entrepreneurs become

averse to fluctuations in their net worth, as these may generate liquidations of productive

capital precisely at times when its prices are depressed. As a result, entrepreneurs want to

transfer aggregate risk to investors by issuing fewer claims against states in which capital

prices are low. This benefit from risk-sharing depends on the aggregate supply of state-

contingent claims by entrepreneurs, which determines the aggregate liquidations and, thus,

the fluctuations in the price of capital. On the other hand, risk-neutral investors become averse

to fluctuations in the value of the claims they hold, as they anticipate that state-contingent

claims may be mispriced/misallocated in secondary markets. As a result, investors want to

be compensated for absorbing aggregate risk. This cost to risk-sharing also depends on the

aggregate supply of claims, since investors hold and re-trade diversified portfolios.

The equilibrium resolves the above tension by linking the extent of equilibrium risk-sharing,

and thus of amplification effects, to the severity of information-trading frictions relative to the

gains from risk-sharing, i.e., the anticipated severity of aggregate shocks and of the resulting

liquidation costs. When the information-trading frictions are relatively severe, the equilibrium

features no risk-sharing: entrepreneurs optimally finance their projects with non-contingent

claims, as the claims prices are too distorted. Entrepreneurs thus willingly expose their net

worth to large fluctuations, enabling the balance sheet channel to kick in. On the other

hand, when information-trading frictions are not as severe, the equilibrium features partial

risk-sharing: entrepreneurs optimally finance their projects with state-contingent claims but

obtain incomplete insurance from investors as the latter still perceive its provision costly. In

this case, the effects of the balance sheet channel are dampened though not fully eliminated.

As information-trading frictions vanish, the equilibrium gradually converges to the benchmark

economy with full risk-sharing, in which the balance sheet channel becomes inoperative.

These results are thus consistent with the often-expressed view that it is lack of liquidity

in markets for macro-contingent claims that hinders aggregate risk-sharing and destabilizes

the business cycle (Case, Shiller and Weiss, 1991; Shiller, 1994; Caballero, 2003; Mian, 2013).

As we discuss next, by formalizing this view, our theory helps us think about the potential
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inefficiencies stemming from such illiquidity and appropriate policy responses.

We find that the laissez-faire equilibrium is constrained inefficient due to a novel externality

that originates from the manner by which secondary markets price and allocate aggregate risk.

To establish this, we solve the problem of a social planner who chooses the agents’ allocations

to maximize social welfare, but who is constrained by the same primitive frictions as the

agents. We show that the laissez-faire allocations differ from those of the constrained planner

for the following reason. When choosing his portfolio of claims and trading arrangements by

which to re-sell them, each investor takes as given the claims and the trading arrangements of

other investors; hence, the rents that he expects to extract from them when buying claims. As

a result, each investor behaves in a way that minimizes the rents that others extract from him

in secondary markets, which in turn distorts the allocation of aggregate risk in the economy.

In equilibrium, however, these rents are ex-post transfers among ex-ante identical investors

and thus do not generate a welfare loss. As the planner understands this, she is able to achieve

a more efficient allocation of aggregate risk in the economy.

We show that the constrained efficient allocations can be decentralized through plausible

interventions in secondary markets, such as subsidies to the sales of risky claims or government

purchases and sales of risky claims. The upshot of these interventions is that, by correcting

the mispricing and misallocation of state-contingent claims, they boost secondary market liq-

uidity and, as a result, enhance aggregate risk-sharing and stabilize economic fluctuations.

We note that such policy prescriptions differ markedly from those obtained from the more

conventional models with financial constraints (e.g., Caballero and Krishnamurthy (2003);

Lorenzoni (2008); Korinek (2011); Bianchi (2011)). In these models, pecuniary externalities

arise either because capital prices enter directly into financial constraints or because capital

price movements have distributional effects (Dávila and Korinek, 2017). Such externalities

are intentionally not present in our setting, which allows us to clearly isolate the new ineffi-

ciencies and policy implications stemming from the presence of information-trading frictions

in financial markets.

Even though our model is stylized and abstracts from a number of institutional details

of real-world markets, it provides a useful framework for interpreting some of the observed

dynamics in the run-up to the 2008-09 financial crisis.2 A puzzling feature of this episode was

the financial sector’s heavy exposure to real-estate risks. During the years of rising real-estate

prices and low uncertainty, banks were able to share part of these risks with the broader pop-

ulation through issuance/purchase of structured products and credit default swaps. In 2007,

however, as uncertainty over real-estate prices and disagreements over real-estate linked assets

rose, it became harder for banks to continue off-loading some of their real-estate exposures.

2See Baily, Litan and Johnson (2008) and Brunnermeier (2009) for an anatomy of these dynamics.
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The inability to share real-estate risks effectively was in turn essential in the balance-sheet

effects that unfolded following the Lehman’s collapse in September 2008. Looking through

the lens of our model, we can interpret these perverse developments as being triggered by

an increase in the severity of information-trading frictions in markets for real-estate exposed

securities, which in turn exacerbated the distortions in the pricing and allocation of real-estate

risks. Furthermore, our model sheds light on a number of policies implemented in the midst of

the crisis, whereby governments intervened to support trade in markets for real-estate exposed

securities (e.g., TAF and TARP).3 Our theory suggests that, beyond the direct stimulative

effect on secondary market liquidity, these interventions may also help spread real-estate re-

lated risks more efficiently throughout the population, ameliorating balance sheet effects and

their repercussions for the real economy.

The information-trading frictions, which are at the heart of this paper, are consistent with

different strands of stylized evidence. For example, in terms of information frictions, Mankiw

et al. (2003) find substantial heterogeneity in inflation forecasts among professional forecast-

ers, economists and consumers, while Dovern et al. (2012) document similar findings in a

cross-country study of surveys of professional forecasters. More recently, Coibion and Gorod-

nichenko (2012, 2015) argue that disagreements are pervasive across a variety of population

subgroups and macroeconomic variables. As for trading frictions, note that in practice an

entrepreneur can insure her net worth against an aggregate state in two ways. First, she

could issue entrepreneur-specific liabilities that are contingent on that state, which would nat-

urally trade in decentralized, frictional over-the-counter markets (Duffie, 2010; Rocheteau and

Weill, 2011). Alternatively, she could issue non-contingent liabilities while purchasing/issuing

standardized derivatives correlated with that aggregate state. Though in advanced economies

some derivatives markets are well-developed, e.g., currency and commodity futures; many

others still remain extremely thin, e.g., real-estate, GDP (Shiller, 1994).4 Moreover, the the-

ory developed here predicts that aggregate investment and sensitivity of business cycles to

shocks depends, among other things, on the development of secondary markets in which the

associated risks can be traded as well as the extent of disagreements in the economy.

This paper belongs to a large literature on the balance sheet channel, starting with the

3The Term Auction Facility (TAF), established in December 2007, allowed commercial banks to borrow
from the FED against a broad set of collateral, including mortgage-backed securities. The Troubled Asset
Relief Program (TARP) was instead initiated by the US Treasury in October 2008 and consisted, among other
things, of government purchases of mortgage-backed securities from the banking sector. See Baily et al. (2008),
Brunnermeier (2009) and Blanchard (2009) for detailed accounts of these interventions.

4In referring to the process of derivatives market formation, Shiller (1994) says that “the history of basic
economic institutions is one of punctuated equilibrium, where basic economic institutions remain largely
unchanged for long periods of time, only to be superseded by new institutions whose advent can only be
attributed to innovation.” Tufano (1989) provides a narrative of the process of financial innovation.
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seminal works of Bernanke and Gertler (1989) and Kiyotaki and Moore (1997), and followed

by Krishnamurthy (2003); Rampini and Viswanathan (2010); He and Krishnamurthy (2011);

Brunnermeier and Sannikov (2014); Di Tella (2017); Bocola and Lorenzoni (2018); Jeenas

(2018), among others. We contribute to this literature by developing a theory that places

a central emphasis on the functioning of secondary markets. To the best of our knowledge,

this is the first paper to provide a comprehensive framework that links the frictions inhibiting

secondary market liquidity for macro-contingent claims to the severity of balance sheet ampli-

fication effects. In doing so, we uncover new inefficiencies that originate from rent-extracting

activities in financial markets, which leads to a novel perspective on optimal corrective policy.

The role of information-trading frictions in financial markets for aggregate investment has

also been explored by Albagli, Hellwig and Tsyvinski (2017), though in a different setting.5

They embed the noisy REE model of Albagli, Hellwig and Tsyvinski (2011) into a general equi-

librium setting and show that lack of information aggregation, resulting from noise-trading and

limits to arbitrage, leads to incumbent shareholders seeking to extract rents from noise traders,

which distorts aggregate investment. Due to the presence of noise traders, entrepreneurial

claims in their setting can be over- or under-valued, and thus there can be over- or under-

investment relative to first-best. In contrast to them, our focus is on how information-trading

frictions introduce distortions to aggregate risk-sharing, and on the implications this has for

the amplification and propagation of aggregate shocks. Furthermore, as all agents are ratio-

nal in our setting, state-contingent claims are systematically under-valued; as a result, there

is always under-investment relative to first-best and risk-sharing is always limited. Finally,

the mechanism design approach we employ ensures that our results come from the primitive

information-trading frictions, which facilitates our normative analysis.

This paper is related to the classical literature on mechanism design under asymmetric

information (Myerson and Satterthwaite, 1983). It is well-known that in environments with

correlated types (as in our case, due to dispersed signals), there exist trading mechanisms that

are both efficient and able to extract the mechanism participants’ full surplus (Cremer and

McLean, 1988; McAfee, McMillan and Reny, 1989). We show, however, that this result does

not hold whenever traders can threaten to leave the trading mechanism after learning their

mechanism allocations (i.e., prices and quantities of claims). This generates a set of “ex-post”

participation constraints, which are natural for our applications to financial markets.6 As a

5See, also, Gorton and Ordonez (2014), Asriyan, Laeven and Martin (2019) and Kantorovitch (2020) for
how information acquisition about the quality of collateral or firm fundamentals interacts with capital markets
and the aggregate economy. See Hollifield and Zetlin-Jones (2017) and Broner, Martin and Ventura (2008) for
how secondary markets foster maturity-/risk-transformation and mitigate problems due to weak enforcement
institutions, respectively. Bond, Edmans and Goldstein (2012) provide an overview of the literature on real
effects of financial markets.

6As we discuss in Section 3.2, ex-post implementation constraints can also be justified on grounds that
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result, we show that the claims traded in the optimal mechanism can now be both mispriced

and allocated inefficiently among agents, a feature that is critical for our main results.

This paper is also related to the literature on security design showing how claims can be

mispriced/misallocated in the presence of asymmetric information (e.g., Gorton and Pennacchi

(1990); Nachman and Noe (1994); DeMarzo and Duffie (1999); Biais and Mariotti (2005);

Axelson (2007); Dang, Gorton and Holmström (2012); Daley, Green and Vanasco (2016)). We

contribute to this literature on two fronts. First, we show that information dispersion among

many agents, which is more plausible for aggregate states than adverse selection, generates

mispricing and misallocation of aggregate risk but only if interacted with trading frictions. To

this end, we employ a mechanism design approach since in settings with dispersed information

the choice of trading protocols may be important. Second, our tractable characterization of

the optimal mechanism allows us to embed it in a general equilibrium environment to study

the inefficiencies stemming from how information dispersion distorts the pricing and allocation

of aggregate risk and, as a result, the aggregate economic activity.

Closer in spirit to our paper is the recent work by Hartman-Glaser and Hébert (2019),

who also study the effects of information frictions on aggregate risk-sharing. They consider

a security design game, where banks can offer securities to households indexed to real-estate

prices. They show that, if banks are better informed about the quality of the index, there can

exist an equilibrium in which all banks optimally offer unindexed securities, due to households’

fear that indexed securities are ‘lemons.’ Besides different mechanisms, our focus is not on

whether there is indexation, but on how information frictions affect the pricing and allocation

of aggregate risk, aggregate economic activity and the design of optimal corrective policy.

Finally, this paper follows a long tradition in economics of studying the aggregate impli-

cations of dispersed information (e.g., Lucas (1972); Lorenzoni (2009); Angeletos and La’O

(2013); Gaballo (2017)). Relative to this literature, this paper emphasizes the interaction be-

tween information dispersion and trading frictions in financial markets, which also relates our

work to the literature on asset pricing with heterogeneous information and limits to arbitrage

(e.g., Grossman and Stiglitz (1980); Albagli et al. (2011)). In our model, it is the finiteness of

traders within each trading arrangement, rather than the presence of noise traders, what pre-

vents information aggregation and distorts claims prices; this in turn facilitates the mechanism

design approach we employ and our normative analysis.

The paper is organized as follows. In Section 2, we present the model. In Sections 3 and 4,

we characterize the equilibrium and its implications for risk-sharing, investment and output.

In Section 5, we study the efficiency properties of the equilibrium and the implications for

corrective policy. We conclude in Section 6. All proofs are relegated to the Appendix.

the mechanism designer has concerns for robustness.
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2 The Model

There are three periods, indexed by t ∈ {0, 1, 2}, and two sets of agents, entrepreneurs and

investors, each of unit mass. There are two goods, perishable consumption and durable capital.

Preferences and Endowments. Entrepreneurs are risk-neutral with lifetime utility UE =

E{cE0 + cE1 + cE2 }, where cEt is an entrepreneur’s consumption in period t. Investors are also

risk-neutral, but they may be subject to preference shocks at t = 1. Their lifetime utility

is U I = E
{
cI0 + β

(
cI1 + cI2

)}
, where cIt is an investor’s consumption in period t and where

β ∈ {0, 1} denotes his preference type, distributed independently among investors with λ ≡
P(β = 0) ∈

[
0, 1

2

]
. Thus, λ is also the fraction of investors who are shocked at t = 1. The sole

purpose of the preference shocks is to generate gains from trade in secondary markets.

Entrepreneurs have access to long-term productive projects, but have no endowments to

fund the projects on their own. They can finance them by issuing claims to investors, each of

whom has a large endowment e of the consumption good at t = 0.

Technology. At t = 0, each entrepreneur creates k0 units of capital by spending χ(k0) units

of the consumption good, where χ(·) is increasing and convex with χ(0) = 0. At t = 1, she

receives ak0 consumption goods and chooses continuation scale k1 by liquidating or buying

capital in a competitive capital goods market at price p. Finally, at t = 2, the entrepreneur

receives Ak1 consumption goods. The intermediate “cashflow” a depends on an aggregate

state s ∈ {l, h}, where a(l) < a(h) and π(h) ≡ P(s = h) ∈ (0, 1), whereas the final cashflow A

is for simplicity deterministic.

The units of capital liquidated by the entrepreneurial sector can be absorbed by a “tradi-

tional” sector, composed of a mass of competitive firms, owned by the investors. These firms

are less productive than the entrepreneurs: by employing k̂1 units of capital at t = 1, each

firm produces gAk̂1 units of consumption goods at t = 2, where g ∈ (0, 1).7

Financial Markets. Period t = 0 is divided into two stages. First, there is an issuance stage,

where entrepreneurs issue claims to investors in a competitive market that prices each unit of

consumption at date t and state s at qt(s). After the issuance stage, the investors learn their

preference shocks and receive dispersed signals about the aggregate state. At this point, there

is a trading stage, where investors can re-trade claims in a frictional secondary market.8

Agents consume at the end of each period, and the economy’s timeline is depicted in Figure

7This technological assumption is standard in the literature on the balance sheet channel (Kiyotaki and
Moore, 1997; Lorenzoni, 2008).

8That the issuance market is competitive is convenient, but not essential. What is crucial is that the
claims issued by entrepreneurs are re-traded in a frictional market at some point before they mature.
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t=0 t=1 t=2

Issuance Stage

E’s issue {bt(s)} to I’s

and choose scale k0.

I’s learn preference

shocks β ∈ {0, 1}
and signals x ∈ {B,G}

Trading Stage

I’s re-trade their claims

in secondary markets.

State s is realized

E’s receive a(s)k0 and

- choose scale k1(s),

- liquidate k0 − k1(s)

to traditional sector,

- repay b1(s) to I’s.

E’s receive Ak1(s)

and repay b2(s)

to I’s.

Figure 1: Timeline. E’s denotes the entrepreneurs, whereas I’s denotes the investors.

1. Our economy is affected by two types of frictions, which are at the heart of this paper and

which we describe next.

Financial frictions. An entrepreneur can always walk away with her t = 2 output. Let bt(s)

denote the claims issued by the entrepreneur for date t and state s. Then, any payments

she can credibly promise to make must satisfy the following limited pledgeability constraint:

b2(s) ≤ 0 for s ∈ {l, h}. This friction is standard in the literature on the balance sheet channel,

as it creates scope for entrepreneurial net worth to matter for investment.

Information-trading frictions. After the issuance stage, each investor privately learns her

preference type β ∈ {0, 1} and signal x ∈ {B,G} about the aggregate state s (information

friction). Conditional on the aggregate state, the signals are distributed independently among

investors, and P (s = h|x = G) > P (s = h|x = B), i.e., investors with Good (Bad) signals

are optimistic (pessimistic) about the state. An investor who wants to re-trade his claims

in secondary markets must post them in a trading arrangement, which is a mechanism that

allocates these claims to and collects payments from a finite number n ≥ 1 of randomly

selected other investors, whom we refer to as traders (trading friction). Importantly, the

format of trading arrangements is not arbitrary and is chosen optimally by each investor.

These information-trading frictions are an innovation of this paper, which highlights the role

of secondary financial markets for aggregate risk-sharing and investment.

To facilitate the exposition, in the main analysis, we impose directly that only the impatient

investors (fraction λ) post their claims in trading arrangements, whereas the remaining in-

vestors (fraction 1−λ) are traders; for convenience, we set nλ = 1−λ in the main text, so that

there is an exact match between trading arrangements and traders. A microfoundation for

such sorting of investors is provided in Appendix C.9 All trades are executed simultaneously.

9We suppose common knowledge of gains from trade within each trading arrangement, which by arguments
akin to Milgrom and Stokey (1982) ensures that there is no trade between investors of same preference type.

9



2.1 Preliminaries

We will assume throughout that the investors’ endowment of consumption goods is sufficiently

large so that they effectively have “deep pockets.”

Assumption 1 The endowment satisfies: e > 2χ(k) for k > 0 s.t. χ(k) = (a(h) + A)k.

This will ensure that in equilibrium the patient investors’ consumption is positive at all

dates. It will in turn imply that the equilibrium risk-free interest rate equals to one, i.e., the

claims prices satisfy:

q1(s) = q2(s) = q(s),
∑
s

q(s) = 1. (1)

Since in equilibrium the price of capital will be bounded by the discounted return to capital

in the traditional and the entrepreneurial sectors, property (1) in turn implies that:

gA ≤ p(s) ≤ A ∀s. (2)

To simplify the analysis, we impose the properties (1) and (2) in the agents’ problems, and

we verify them formally in Appendix B.

We will also make the following technological assumptions.

Assumption 2 The economy’s technology satisfies:

(i) χ(k) <
∑

s π(s)a(s)k for k s.t. χ′(k) =
∑

s π(s)(a(s) + gA).

(ii) χ(k) > a(l)k for k s.t. χ′(k) = π(h)g
π(h)g+1−π(h)

(a(h) + A) +
(

1− π(h)g
π(h)g+1−π(h)

)
(a(l) + gA).

(iii)
∑

s π(s)a(s) < a(l) + gA < a(h).

These parametric assumptions do not drive our main results, but they allow us to focus the

equilibrium analysis on the economically interesting cases; namely, that in equilibrium capital

liquidations never occur in state h, but that liquidations may occur in state l depending on

distortions in the claims prices. More concretely, they guarantee that it is sub-optimal for

entrepreneurs to liquidate capital with probability one (Assumption 2(i)); that, when issuing

non-contingent claims, some liquidations (but only in state l) are optimal (Assumption 2(ii)

and second inequality in Assumption 2(iii)); and that entrepreneurs can raise more funds by

issuing non-contingent claims and liquidating capital than by issuing contingent claims and

avoiding liquidations with probability one (first inequality in Assumption 2(iii)).
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Finally, it is useful to define a notion of first-best scale of investment, kFB, which would

arise in a frictionless economy:

χ′(kFB) =
∑
s

π(s)(a(s) + A). (3)

As we will see, kFB will provide an upper bound on the investment scale in our economy.

2.2 Entrepreneurs’ Problem

All entrepreneurs are identical. The representative entrepreneur takes as given the prices of

claims {q(s)} and capital {p(s)}, and chooses the investment scale k0, the continuation scales

{k1(s)}, and the claims {bt(s)} to maximize her lifetime welfare:∑
s

q(s) (b1(s) + b2(s))−χ(k0)+
∑
s

π(s) [(a(s) + p(s))k0 − p(s)k1(s)− b1(s) + Ak1(s)− b2(s)]

(P1)

subject to the following set of constraints:

χ(k0) ≤
∑
s

q(s) (b1(s) + b2(s)) (4)

p(s)k1(s) + b1(s) ≤ (a(s) + p(s))k0 ∀s, (5)

b2(s) ≤ 0 ∀s, (6)

0 ≤ k1(s) ∀s. (7)

The first two constraints simply impose consumption non-negativity. Constraint (4) states

that at t = 0 the entrepreneur’s expenditures on investment cannot exceed the funds raised by

issuing claims to investors. Constraint (5) states that at t = 1 the entrepreneur’s expenditure

on claims repayments plus net purchases of capital cannot exceed the output of her project.

Constraint (6) is the limited pledgeability friction and constraint (7) requires that the con-

tinuation scale be non-negative. The entrepreneur’s consumption non-negativity at t = 2 is

implied by limited pledgeability and non-negativity of continuation scale.

2.3 Traditional Sector Firms’ Problem

The problem of the traditional sector firms is simple. At t = 1 and state s, each firm in

this sector takes the price of capital p(s) as given and chooses to purchase k̂1(s) ≥ 0 units of
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capital to maximize its discounted profits:

Π(s) = gAk̂1(s)− p(s)k̂1(s). (8)

Since in equilibrium the price of capital will be (weakly) greater than gA, these firms will only

demand capital when p(s) = gA. The investors, who own these firms, have sufficient resources

to fund these activities (see Appendix B). Finally, the investors’ claims on this sector have

value of zero, since the traditional sector firms earn zero discounted profits in each state.

2.4 Investors’ Problem

At the issuance stage, all investors are identical. The representative investor takes as given the

claims prices {q(s)}, and he chooses to purchase claims {dt(s)} and the trading arrangement

in which to re-trade them, denoted by µ.10 The set of feasible trading arrangements from

which the investor chooses is denoted by M and will be described shortly.

At the trading stage, the investors learn their preferences and signals about the aggregate

state. An impatient investor posts the claims {dt (s)} in the trading arrangement µ that he has

designed, which gives him a net expected payoff V ({dt (s)} , µ). A patient investor does not

post his claims, but he participates as a trader in the trading arrangements of other investors,

which gives him a net expected payoff of W̃ . Note that this payoff is an equilibrium object as

it depends on the joint design of claims and trading arrangements of other investors.

Thereferore, the investor’s problem is to choose {dt(s)} and µ to maximize lifetime welfare:

e−
∑
s

q(s) (d1(s) + d2(s)) +λV ({dt(s)}, µ) + (1−λ)

(
W̃ +

∑
s

π(s) (d1(s) + d2(s))

)
, (P2)

where recall that λ is the ex-ante probability that an investor becomes impatient. This problem

is subject to two sets of constraints. First, the claims purchases must respect the investor’s

budget constraint at the issuance stage, i.e., e ≥
∑

s q(s)(d1(s) + d2(s)), and consumption

non-negativity in periods 1 and 2, i.e., dt(s) ≥ 0 ∀t, s. Second, the trading arrangement µ

must be in the feasible set M, which we describe next.

Feasible Trading Arrangements

When designing a trading arrangement, the investor anticipates that, if impatient, he will

have to sell his claims to privately informed traders (the patient investors). He designs an

10That the trading arrangement is chosen before the investor learns his private signal x avoids the unnec-
essary complications of analysing the mechanism design problem of a privately informed designer.
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optimal mechanism, which solicits reports from the traders, and then allocates claims to and

collects payments from them based on these reports. We focus on direct revelation mechanisms

implementable as Bayesian Nash equilibria, in which each trader is willing to report his signal

truthfully to the mechanism, given that other traders also report truthfully.

Because the risk-free rate between t = 1 and t = 2 equals one, for the design problem it

suffices to keep track of the total claims held by the investor for state s, which we denote

by v(s) ≡ d1(s) + d2(s). Let i ∈ {1, ..., n} index the traders matched with a given trading

mechanism, and let θi denote report of trader i, who recall has a private signal xi. The reports

and the signals of traders other than i are for short denoted by θ−i and x−i respectively. Upon

collecting the traders’ reports (θ1, ..., θn), the mechanism proposes an allocation Ai (θi, θ−i) ≡
(ωi (θi, θ−i) , {vis (θi, θ−i)}) to trader i, where ωi (θi, θ−i) is the payment that trader i makes to

the mechanism and vis (θi, θ−i) are the units of claims for state s that the mechanism transfers

to the trader; when there is no trade with trader i, we say that the allocation is empty.11 The

trader can accept or reject this allocation, and his payoff from accepting it is:

U i
(
xi,Ai

(
θi, θ−i

))
=
∑
s

vis
(
θi, θ−i

)
· P
(
s|xi,Ai

(
θi, θ−i

))
− ωi

(
θi, θ−i

)
, (9)

where Prob (s|xi,Ai (θi, θ−i)) is trader i’s belief that the state is s, given his signal and his

allocation, where the latter may contain information about other traders’ signals and, thus,

about the aggregate state.

Naturally, the trading mechanism needs to satisfy a set of participation, incentive compat-

ibility and feasibility constraints.

Participation (PC). We impose a form of “ex-post” participation constraint by supposing that

trader i has the right to choose not to participate in the trading mechanism after learning

his allocation, i.e., he participates if and only if the payoff in equation (9) is non-negative.

Because the mechanism can always choose the empty allocation, it is without loss to focus on

mechanisms which ensure that each trader participates in equilibrium:

U i
(
xi,Ai

(
xi, x−i

))
≥ 0 ∀i, xi, x−i. (10)

This effectively implies that the designer cannot punish trader i were he to leave the mechanism

upon learning his allocation Ai, which might inform him of other traders’ signals.

Incentive compatibility (IC). In order for a trader to report his signal truthfully, given that

11The implicit assumption that the mechanism does not condition the allocations on the signal of the selling
investor economizes on notation, but it is not essential (see proof of Proposition 1 in Appendix A).
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the other traders do so as well, it must be that:

E
{
U i
(
xi,Ai

(
xi, x−i

))∣∣xi} ≥ E
{

max
{

0, U i
(
xi,Ai

(
θi, x−i

))}
|xi
}
∀i, xi, θi. (11)

Note that the IC’s take into account that each trader can potentially deviate to both misreport

his signal and then choose not to trade.

Feasibility (FC). The claims that the mechanism allocates to the traders cannot exceed the

claims available to the investor:∑
i

vis(θ
i, θ−i) ≤ v (s) ∀s, θi, θ−i. (12)

Assumption 1 will ensure that in equilibrium the mechanism allocations are consistent with

the investors’ consumption non-negativity (see Appendix B). If out of equilibrium an investor

cannot afford to participate in the mechanism, we assume that he gets the empty allocation.

A trading arrangement is thus defined by µ = {Ai (xi, x−i)}i,xi,x−i , and the set of feasible

trading arrangementsM consists of all such µ’s satisfying (PC), (IC) and (FC). The expected

payoff to the investor who trades his claims in the trading arrangement µ is:

V ({v(s)}, µ) = E

{∑
i

ωi(xi, x−i)

}
, (13)

whereas the ex-ante expected payoff to a trader from participating in this arrangement is:

W ({v(s)}, µ) = E
{
U i(xi,Ai(xi, x−i))

}
. (14)

Importantly, note that when an investor designs the trading arrangement by which to trade

his claims, he takes as given trading arrangements and the claims of other investors and, thus,

her payoff W̃ from participating in them. Thus, the investor’s optimal trading arrangement

maximizes V ({v(s)}, µ). In equilibrium, of course, all investors will choose identical claims

and trading arrangements, so that W̃ = W .

2.5 Equilibrium Notion

We are ready to define an equilibrium of our economy. In what follows, when necessary

to avoid confusion, we will make use of capitalized letters in order to distinguish aggregate

quantities from the individual ones: e.g., K0 denotes the aggregate investment scale. We

will focus on symmetric equilibria, in which the two coincide, i.e., k0 = K0, k1(s) = K1(s),
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bt(s) = Bt(s), dt(s) = Dt(s) ∀t, s.

Definition 1 An equilibrium consists of prices {q(s), p(s)}, a trading arrangement µ ∈ M,

and allocations {k0, K0, k1(s), K1(s), k̂1(s), K̂1(s), bt(s), Bt(s), dt(s), Dt(s)} such that:

1. Given the prices {q(s), p(s)}, the allocations {k0, k1(s), k̂1(s), bt(s), dt(s)} and the trading

arrangement µ solve the agents’ problems P1 and P2,

2. The markets for claims and capital clear: Bt(s) = Dt(s) and K1(s) + K̂1(s) = K0 ∀t, s.

3 Equilibrium Characterization

We now characterize the equilibrium of our economy. We first study the entrepreneurs’ optimal

investment, financing, and continuation decisions, for given asset prices. Then, we study

the investors’ optimal choice of trading arrangements. Finally, we combine these results to

determine the equilibrium pricing of claims and capital.

3.1 Optimal Investment, Financing and Continuation

In this section, we characterize the solution to the entrepreneurs’ problem. We solve this

problem backwards.

At t = 2 and state s, the entrepreneur simply consumes her final output net of repayment,

Ak1(s)− b2(s), which recall is non-negative since k1(s) ≥ 0 and b2(s) ≤ 0.

At t = 1 and state s, the entrepreneur has net worth (a(s) + p(s))k0 − b1(s), and she must

decide the continuation scale, k1(s), which will in turn determine her consumption.

Lemma 1 The entrepreneur’s optimal continuation scale at t = 1 and state s is given by:

k1(s)

= (a(s)+p(s))k0−b1(s)
p(s)

if p(s) < A,

∈
[
0, (a(s)+p(s))k0−b1(s)

p(s)

]
if p(s) = A.

(15)

The entrepreneur’s return to a unit of capital at this date is A. So, she prefers to purchase

capital rather than consume if p(s) < A, and she is indifferent otherwise (i.e., if p(s) = A).

At t = 0, the entrepreneur chooses the investment scale k0 and the claims {bt(s)}. Since

the entrepreneur is (weakly) constrained at t = 1, she will neither consume at t = 0 nor save

for consumption at t = 2, as stated formally in the following lemma.

Lemma 2 The entrepreneur optimally sets χ(k0) =
∑

s q(s)b1(s) and b2(s) = 0 ∀s.
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To see this, suppose to the contrary that the entrepreneur saves, b2(s) < 0. Then she can do

better by increasing b2(s) and reducing b1(s), since she could thus reduce capital liquidations

at t = 1, given by k0−k1(s), while keeping k0 unchanged (Lemma 1). By analogous reasoning,

the entrepreneur can do better by reducing consumption at t = 0 together with b1(s).

Using Lemmas 1 and 2, the entrepreneur’s problem simplifies to the maximization of her

expected net worth weighted by her marginal value of funds in each state, A
p(s)

:

max
k0,{b1(s)}

∑
s

π(s)
A

p(s)
((a(s) + p(s))k0 − b1(s)) (16)

subject to χ(k0) =
∑

s q(s)b1(s) and b1(s) ≤ (a(s) + p(s))k0 ∀s. Thus, entrepreneurs attach a

higher value to a unit of net worth in states with lower prices of capital.

Consider the entrepreneur’s choice of financing, for a given scale k0. When deciding how to

raise funds, the entrepreneur compares across the two states the ratio π(s)A/p(s)
q(s)

, which captures

how many expected ‘utils-per-dollar’ she loses by borrowing through a claim for state s. If
π(h)
q(h)

A
p(h)

< π(l)
q(l)

A
p(l)

, borrowing against the high state is less costly; as a result, the entrepreneur

exhausts her borrowing capacity in that state and borrows the remainder against the low

state, and vice versa. If π(h)
q(h)

A
p(h)

= π(l)
q(l)

A
p(l)

, she is indifferent to borrowing against the high vs.

the low state. This is formalized in the following lemma.

Lemma 3 The entrepreneur’s optimal choice of claims is such that, for s′, s′′ ∈ {l, h}:

(i) If π(s′)
q(s′)

A
p(s′)

< π(s′′)
q(s′′)

A
p(s′′)

, then b1(s′) = (a(s′) + p(s′))k0;

(ii) If π(s′)
q(s′)

A
p(s′)

= π(s′′)
q(s′′)

A
p(s′′)

, then the entrepreneur is indifferent to the choice of claims.

Equipped with the entrepreneur’s optimal financing decision, we can now determine the

optimal investment scale by maximizing (16) with respect to k0.

Lemma 4 The entrepreneur’s optimal investment scale at t = 0 is given by:

χ′(k0) =
∑
s

q(s)(a(s) + p(s)). (17)

Thus, the entrepreneur invests until the marginal cost of creating an additional unit of

capital equals the market value of cashflows produced by that unit plus its resale.

3.2 Optimal Trading Arrangements

We now study the investor’s choice of trading arrangement, which maximizes the value of

claims given in (13) subject to (PC), (IC), and (FC) given in (10)-(12).
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Let v(s) be the claims held by an investor for state s, and let µ∗ denote an optimal trading

arrangement by which these claims are traded. The following proposition summarizes the key

properties of optimal trading arrangements.

Proposition 1 The optimal trading arrangement for claims {v(s)} has the following features:

(i) The value of the claims is given by:

V ({v(s)}, µ∗) =
∑
s

π(s)v(s)− ζ|v(h)− v(l)|, (18)

where ζ =

ζ+ if v(h) ≥ v(l)

ζ− if v(h) < v(l)
, and ζ+ ∈ (0, π(h)) , ζ− ∈ (0, 1− π(h)).

(ii) The ex-ante net expected payoff of a trader participating in it is:

0 ≤ W ({v(s)}, µ∗) ≤ n−1ζ|v(h)− v(l)|, (19)

where the last inequality is an equality if and only if the trading arrangement allocates

the claims efficiently.

(iii) ζ+, ζ− are scalars that depend only on the trading friction, n, the distribution over

the signals, {P(x|s)}x,s, and over the state, {π(s)}s. In particular, ζ+, ζ− decline to

zero either as n grows large or as information dispersion vanishes, i.e., signals become

uninformative or perfectly informative, or uncertainty about the state vanishes.

It is worth noting that the above three properties of the optimal mechanism are proved

using arguments that do not rely on the particular binary signal structure that we have

assumed; this approach is illustrative of the general economic forces that underlie the mispric-

ing/misallocation of state-contingent claims, which we discuss next.

First, state-contingent claims are mispriced in trading arrangements, despite their optimal

design. As a result, the value of contingent claims is less than actuarially fair. If to the

contrary the claims were priced fairly, it would have to be that the mechanism allocates the

claims to traders with probability one and that the traders break even. But then, there is a

profitable deviation for a trader to misreport his signal: the traders who are more optimistic

about the value of the claims have an incentive to mimic those who are more pessimistic;

because the latter break even, the former must earn rents. The distortion ζ|v(h) − v(l)|
captures the extent to which the traders are able to engage in rent-extraction.

Second, state-contingent claims may be misallocated in trading arrangements, i.e., the mech-

anism may not allocate all the claims to the traders, which is inefficient since the impatient
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investors do not value future consumption. This is reflected in the feature that the traders’

aggregate payoff nW can be lower than the loss of the mechanism, ζ|v(h)− v(l)|. The reason

is that it may be optimal for the mechanism to exclude pessimistic traders in order to reduce

the rents earned by the optimistic ones.

Third, the mispricing/misallocation of state-contingent claims arises due to the interaction

of information dispersion and trading frictions. Intuitively, the extent to which a trader can

extract rents from the mechanism hinges on how relevant is his signal for valuing contingent

claims, conditional on the information set of the mechanism (i.e., what it learns from other

traders’ reports). As either information dispersion or trading frictions vanish, a single trader’s

contribution to valuing the mechanism’s claims vanishes as well.

In other words, it is as if the mechanism splits the claims into a “safe tranche” (i.e.,

claim that pays mins{v(s)} in both states) and “risky tranche” (i.e., claim that pays v(s) −
mins{v(s)} in state s). Whereas the mechanism values the safe tranche at fair value, mins{v(s)},
and sells it to traders with probability one, it values the risky tranche below its expected value,∑

s π(s)(v(s)−mins{v(s)}), and may retain it inefficiently rather sell it to traders.

We use the binary signal structure to provide further characterization of the optimal mecha-

nism, which as we discuss next facilitates comparative statics on the distortion term ζ (see com-

plementary Lemma A.3). To illustrate the workings of the mechanism, consider the case where

private signals are binary-symmetric, i.e., P(x = G|s = h) = P(x = B|s = l) = φ ∈ (1
2
, 1).

When φ is small, the optimal mechanism allocates the claims efficiently, always to the opti-

mists (if there are any) and sometimes to the pessimists (if there are no optimists), but it

leaves information rents to the optimists to discourage them from misreporting their signals.

As shown in Figure 2, when φ is small, the distortion term ζ+ rises with the gap between the

optimistic and pessimistic valuations, which increases with φ. Instead, when φ is large, the

mechanism allocates the risky tranche inefficiently, only to optimists (if there are any), which

discourages these traders from misreporting their signals, without leaving them any rents. As

shown in Figure 2, when φ is large, the distortion term ζ+ falls with φ; here, since optimists

do not earn rents, ζ+ captures the probability of no trade, which decreases with φ.

The results in Proposition 1 provide a sharp contrast to those in Cremer and McLean

(1988) and McAfee et al. (1989). In a related environment, they show that traders are neither

able to extract rents from the mechanism nor is the allocation of claims in the mechanism

inefficient. In contrast to this paper, they consider mechanisms in which the traders effectively

have enough commitment power to enter into ex-ante lotteries whose payoffs depend on the

entire profile of reported signals, despite the fact that these lotteries may ex-post collect large

payments from traders who end up receiving very few claims. But, because we allow the
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Figure 2: Illustrates how ζ+ depends on the trading friction, n, the signal informativeness, φ, and the distri-
bution over the state, π(h). Unless stated otherwise, the figure assumes that π(h) = 0.8 and n = 2.

traders to costlessly leave the mechanism after learning their allocations, such lotteries are

ruled out in our setting, which is enough to generate mispricing/misallocation of claims in

secondary markets. We conjecture that this result would continue to hold in broader settings

where some (but not full) committment to participate in such lotteries is present.

Lastly, we note that one could justify ex-post rather than ex-interim implementation con-

straints on grounds that these represent a more robust (i.e., less dependent on the details of

the environment) solution concept (see, e.g., Hagerty and Rogerson (1987); Green and Laffont

(1987); Lopomo (2001); Bergemann and Morris (2005)). For instance, in the spirit of Hagerty

and Rogerson (1987), we could require that the allocations of the mechanism satisfy a form of

“no-regret property,” whereby each trader must find it optimal to report his signal truthfully

and to participate in the mechanism no matter his allocation. But this approach would make

both the incentive compatibility and the participation constraints hold ex-post, which would

again prevent full surplus extraction and lead to mispricing/misallocation of claims.

3.3 Equilibrium Prices of Claims and Capital

Now that we have determined the value of claims in secondary markets, we can study the

determination of equilibrium claims prices at the issuance stage. The following corollary

shows how the mispricing/misallocation of contingent claims in secondary markets distorts

the claims prices faced by the entrepreneurs.
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Corollary 1 In equilibrium, the prices of state-contingent claims satisfy:

q(l) = 1− q(h), q(h)


= π(h)− λζ+ if B1(h) > B1(l),

∈ [π(h)− λζ+, π(h) + λζ−] if B1(h) = B1(l),

= π(h) + λζ− if B1(h) < B1(l).

(20)

When the aggregate supply of claims by entrepreneurs satisfies B1(h) > B1(l), the market

discounts an additional unit of a claim for the high state by λζ+, since with probability

λ each investor will need to re-trade such a claim and face a discount ζ+ (Proposition 1).

Analogously, when B1(h) < B1(l), the market discounts each additional unit of a claim for

the low state by λζ−. Finally, the investors are happy to hold a non-contingent portfolio when

q(h) ∈ [π(h)− λζ+, π(h) + λζ−], since the resale value of an additional unit of a claim for the

high (low) state is weakly lower than q(h) (1− q(h)).

To complete the determination of asset prices, we use the entrepreneurs’ optimality condi-

tions together with the traditional sector firms’ demand for capital to pin down the market

clearing prices of capital.

Corollary 2 The equilibrium price of capital in state s satifies:

p(s)


= A if B1(s) < a(s)K0,

∈ [gA,A] if B1(s) = a(s)K0,

= gA if B1(s) > a(s)K0.

(21)

When the entrepreneurial sector’s promised repayments exceed its cashflows, i.e., the en-

trepreneurs’ net worth is low, the entrepreneurs have to liquidate capital; thus, K1(s) < K0.

As a result, the price of capital becomes depressed, as capital must be absorbed by the tra-

ditional sector, which is less productive than entrepreneurs. When the repayments are lower

than cashflows, i.e., the entrepreneurs’ net worth is high, then the price must be A, since if it

were lower there would be excess demand for capital from the entrepreneurs; thus, K1(s) = K0.

Finally, when repayments are just equal to the cashflows, the price must be in the interval

[gA,A], so that in equilibrium capital is not traded; thus, K1(s) = K0.

We note a key tension that arises in equilibrium. On the one hand, even though en-

trepreneurs are risk-neutral, they become averse to fluctuations in their net worth, as due to

balance sheet effects these may generate capital liquidations precisely at times when capital

prices are depressed (Corollary 2). As a result, entrepreneurs want to transfer aggregate risk

to investors by issuing claims against states in which capital prices are high (Lemma 3). On
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the other hand, even though investors are risk-neutral, they become averse to fluctuations in

the value of their tradable claims, as the presence of information-trading frictions generates

mispricing/misallocation of contingent claims in secondary markets (Proposition 1). As a

result, investors prefer to hold portfolios that are less exposed to aggregate risk (Corollary

1). In the following sections, we investigate how this tension gets resolved in equilibrium, and

whether there is scope for corrective policy.

4 Equilibrium Risk-Sharing, Investment and Output

We now use the results in Sections 3.1-3.3 to study the implications of information-trading

frictions for equilibrium risk-sharing, investment and output.

We begin by considering a benchmark, where information-trading frictions are shut down.

This benchmark starkly illustrates how risk-sharing between entrepreneurs and investors can

eliminate the balance sheet channel and stabilize economic activity. We will then see how the

interaction of financial constraints with information-trading frictions alters this picture.12

4.1 Benchmark: Economy without Information-Trading Frictions

Let us suppose that the parameters are such that λζ = 0, so that the claims prices are

undistorted and given by q(s) = π(s) ∀s. By Corollary 1 and Proposition 1, this would arise

for instance if dispersion in the private signals were to vanish.

The first implication is that full risk-sharing must be attained in equilibrium. That is, the

entrepreneurs’ marginal value of funds, A
p(s)

, and thus the prices of capital must be equalized

across states. If this were not the case, then entrepreneurs would exhaust their borrowing

capacity against the state with the higher price of capital (Lemma 3), resulting in more liqui-

dations and a lower price of capital in that state (Lemma 1 and Corollary 2), a contradiction.

Second, entrepreneurs will only borrow against their intermediate cashflows and avoid cap-

ital liquidations, i.e., B1(s) ≤ a(s)K0 and K1(s) = K0 ∀s. If they were to borrow more,

they would have to start liquidating capital (Lemma 1), which would depress its price to gA

(Corollary 2), making investment less desirable than K0 (Lemma 4 and Assumption 2(i)).

Third, the economy’s final output gets fully insulated from the shock to intermediate cash-

flows, i.e., Y2(s) = AK0 ∀s. This is despite the fact that the shock directly affects the

economy’s output at t = 1, i.e., Y1(s) = a(s)K0 in state s. This idea that risk-sharing can

12An alternative benchmark, where information-trading frictions are present but the entrepreneurs’ output
is fully pledgeable, is presented in Appendix D. The equilibrium of that economy is not very interesting:
although ex-ante investment may be depressed relative to first-best, the equilibrium always features full risk-
sharing between entrepreneurs and investors and, thus, there are no balance sheet amplification effects.
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mute the impact of aggregate shocks on the borrowers’ net worth and thereby eliminate the

balance sheet channel has also been noted by Krishnamurthy (2003) and Di Tella (2017).

Finally, although the balance sheet channel is eliminated, aggregate investment and output

may be depressed relative to first-best due to limited pledgeability. This occurs whenever

the funding required to invest at the first-best scale exceeds the entrepreneurs’ intermediate

cashflows, i.e., χ(kFB) >
∑

s π(s)a(s)kFB as defined in equation (3).13 This last feature is not

very surprising and is common to models with financial frictions.

4.2 Economy with Information-Trading Frictions

We now return to the economy with information-trading frictions. It will be convenient to

divide the parameter space into two regions since as we will see, depending on the parameters,

the economy will either be in a “no risk-sharing” or a “partial risk-sharing” regime. To this

end, it is useful to define a claims price q̄, at which an entrepreneur is indifferent to issuing an

additional claim for state h, when the equilibrium aggregate supply of claims is non-contingent:

q̄ ≡ min

{
π(h)g

π(h)g + 1− π(h)
,

χ′(k̄)− (a(l) + gA)

(a(h) + A)− (a(l) + gA)

}
, (22)

where k̄ > 0 is such that χ(k̄) = (a(l) + gA)k̄. We will explain the intuition behind the

expression for q̄ shortly. As we shall see we can think of π(h) − q̄ > 0 as an equilibrium

“insurance premium” that entrepreneurs are willing to pay to insure net worth fluctuations.

The following proposition shows that when information-trading frictions are severe relative

to the insurance premium, the equilibrium features no risk-sharing whatsoever.

Proposition 2 (No Risk-Sharing) Suppose that λζ+ > π(h) − q̄. Then, an equilibrium

exists and in it:

(i) Aggregate supply of claims is non-contingent, B1(h) = B1(l) = B1;

(ii) Capital is liquidated if and only if the state is low;

(iii) Asset prices satisfy q(h) = q̄ and p(l) = gA < A = p(h).

The first result follows from the observation that, when the aggregate supply of claims is

non-contingent, i.e., B1(h) = B1(l) = B1, investors demand a premium λζ+ for holding an

additional claim for the high state (Proposition 1), while entrepreneurs are only willing to pay

13If χ(kFB) >
∑

s π(s)a(s)kFB , then entrepreneurs invest all of their intermediate cashflows, χ(K0) =∑
s π(s)a(s)K0, and the price of capital is p = χ′(K0) −

∑
s π(s)a(s) ∈ (gA,A) by Assumption 2(i). But, if

χ(kFB) ≤
∑

s π(s)a(s)kFB , then entrepreneurs invest at the first-best scale and the price of capital is A.
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a premium of π(h) − q̄. The claims price q(h) is then such that entrepreneurs are willing to

remain uninsured. Given this, Assumptions 2(ii)-(iii) imply that entrepreneurs find it optimal

to liquidate capital in the low state, but have excess net worth at t = 1 in the high state, i.e.,

B1 < a(h)K0. This in turn implies the statement about capital prices (Corollary 2).

To understand how we arrive at the expression for q̄, note that there are two possibilities.

If in equilibrium entrepreneurs do not exhaust borrowing capacity in the low state, i.e., B1 <

(a(l) + gA)K0, then an entrepreneur must be indifferent to issuing an additional claim for the

high state and using the proceeds to reduce borrowing against the low state by q(h). This

can be shown to change the entrepreneur’s expected utility by u1 ≡ (1− π (h)) g−1q(h) +

π (h) (q(h)− 1). Setting u1 to zero and solving for q(h) yields the first term in the definition

of q̄. But, if in equilibrium entrepreneurs do exhaust the borrowing capacity in the low state,

i.e., B1 = (a(l) + gA)K0 and K0 = k̄, it must be that u1 ≤ 0 and q(h) ≤ π(h)g
π(h)g+1−π(h)

. But

then, an entrepreneur must be indifferent to issuing an additional claim for the high state and

increasing the investment scale by q(h)(χ′(k̄)− (a (l) + gA))−1. This can be shown to change

the entrepreneur’s expected utility by u2 ≡ π (h) (q(h) (a(h)+A)−(a(l)+gA)

χ′(k̄)−(a(l)+gA)
−1). Setting u2 to zero

and solving for q(h) yields the second term in the definition of q̄.

Because in this economy there is no risk-sharing at all, the shock to intermediate cashflows

now does propagate to the economy’s final output through capital liquidations in the low

state, i.e., Y2(l) = AK0 − (1 − g)A(K0 − K1(l)) < AK0 = Y2(h). Moreover, the shock is

now amplified through the decline in the capital price, since K0 −K1(l)|p(l)=gA = B1−a(l)K0

gA
>

B1−a(l)K0

A
= K0−K1(l)|p(l)=A. This idea that fluctuations in borrowers’ net worth can amplify

and propagate aggregate shocks goes back to the classic works of Bernanke and Gertler (1989)

and Kiyotaki and Moore (1997), and has more recently been explored by Brunnermeier and

Sannikov (2014), among others. In the literature, however, the limits to aggregate risk-sharing

are often imposed ad-hoc rather than derived from first principles. In Section 5, we will show

that understanding the source of the underlying distortion has important policy implications.

We next show that, when information-trading frictions are not severe relative to the in-

surance premium, the equilibrium features partial risk-sharing, which endogenously bounds

economic fluctuations.

Proposition 3 (Partial Risk-Sharing) Suppose that λζ+ < π(h)−q̄. Then, an equilibrium

exists and in it:

(i) Aggregate supply of claims is contingent, B1(h) > B1(l);

(ii) Capital may be liquidated, but only if the state is low;
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Figure 3: Illustrates the equilibrium effect of information-trading frictions. The left panel depicts the equi-
librium investment scale K0, and the continuation scale, K1(s), whereas the right panel depicts the price of
capital, p(s). For comparative statics, it is useful to relax the exact matching assumption (see Appendix C).
We use the following values for the remaining parameters: π(h) = 0.8, a(l) = 0, a(h) = 1, A = 1.1, g = 0.83,
and χ(k) = χkω with ω = 2.2 and χ = 3.

(iii) Asset prices satisfy q(h) = π(h)−λζ+ and γp(h) ≤ p(l) < p(h) with γ ≡ π(h)−λζ+
1−π(h)+λζ+

1−π(h)
π(h)

,

where p(l) = γp(h) if B1(l) < (a(l) + gA)K0.

Since the entrepreneurs’ willingness to insure net worth fluctuations (if they were uninsured)

is now greater than the investors’ cost of providing insurance, the equilibrium aggregate supply

of claims must be state-contingent. However, because insurance provision is still privately

costly to investors due to the mispricing/misallocation of claims in secondary markets, full

risk-sharing cannot be attained, i.e., there is partial risk-sharing.

Because of partial risk-sharing, the fluctuations in the entrepreneurs’ net worth, in their

marginal value of funds and in capital prices are endogenously diminished relative to the

economy with no risk-sharing. As a result, the magnitude of economic fluctuations becomes

tied to the severity of information-trading frictions. Indeed, as λζ+ goes to zero, the term γ

which controls the volatility in capital prices (and thus of the entrepreneurs’ marginal value

of funds) across the two states goes to one, and the equilibrium converges to the benchmark

economy of Section 4.1.

Finally, the equilibrium investment scale always remains depressed below first-best, inde-

pendently of the equilibrium region, since:

χ′(K0) =
∑
s

q(s)(a(s) + p(s)) <
∑
s

π(s)(a(s) + A) = χ′(kFB), (23)

24



where the inequality follows from the fact that q(h) < π(h) and p(l) < p(h) ≤ A (see

Propositions 2 and 3). As we discuss below, however, K0 is actually non-monotonic in the

severity of information-trading frictions and can be above that of the benchmark economy.

Propositions 2 and 3 establish existence of an equilibrium. Moreover, it is straightforward

to show that the equilibrium is unique in terms of the aggregate supply of claims, investment

and continuations scales, as well as the prices of claims and capital. However, we refrain from

stating that the equilibrium is unique since there may be multiple ways to allocate claims in

the optimal mechanism, without affecting the equilibrium objects of interest.

Figure 3 provides an illustration of the results in Propositions 2 and 3 by showing how

information-trading frictions, λζ+, affect the aggregate investment and continuation scales

(left panel), and the prices of capital (right panel). The changes in information-trading fric-

tions should be interpreted as induced by changes in λ, n or signal distribution {P(x|s)},
but not π(h) (see Proposition 1(iii) and Figure 2), as these are the primitives that enter the

equilibrium conditions only through λζ+ and λζ− in Corollary 1.

Let us start with the “partial risk-sharing” region, i.e., λζ+ < π(h) − q̄. Initially, when

information-trading frictions are small, entrepreneurs borrow only against their (contingent)

intermediate cashflows to avoid capital liquidations. As a result, as λζ+ rises, the market

value of entrepreneurial claims falls and so does aggregate investment. Eventually, as λζ+

rises further, entrepreneurs increase borrowing against the low state and start liquidating

capital in order to boost investment ex-ante. Indeed, because of the possibility to create less

contingent claims through liquidations, the investment scale actually rises above that of the

benchmark economy without information-trading frictions (i.e., λζ+ = 0)! In this region, the

gap in capital prices across the two states, which is needed to keep entrepreneurs indifferent

to borrowing against high vs. low state (as captured by γ), increases with λζ+. Finally, note

that in the “no risk-sharing” region, as entrepreneurs borrow with non-contingent claims, the

equilibrium allocations no longer depend on the magnitude of information-trading frictions.

We conclude this section by providing the conditions on the primitives under which the “no

risk-sharing” region is more likely to emerge.

Corollary 3 Assume that χ(k) = χkω for some χ > 0 and ω > 1, and that the private

signals are binary-symmetric, i.e., P(x = G|s = h) = P(x = B|s = l) = φ ∈ (1
2
, 1). Then, the

equilibrium is more likely to be in the “no risk-sharing” region when, all else equal:

(i) λ is large, n is small, and φ is intermediate, i.e., the secondary markets for contingent

claims are sufficiently relevant and frictional;

(ii) g, ω, and a(l)+gA
a(h)+A

are large, i.e., the benefits from transferring aggregate risk to investors

are not too great.
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The effect of π(h), however, is ambiguous.

We have established in Propositions 2 and 3 that the equilibrium features “no risk-sharing”

whenever λζ+ is greater than π(h) − q̄. The proof of the corollary then relies on the fol-

lowing observations. First, while π(h) − q̄ is independent of the parameters (λ, n, φ), larger

values for λ, smaller values for n and intermediate values for φ make the distortion term λζ+

larger. Intuitively, this is when secondary market liquidity is more important and the mispric-

ing/misallocation of contingent claims in them is greater. Second, while λζ+ is independent

of the parameters (a(l), a(h), A, ω, g), larger values for g, ω, and a(l)+gA
a(h)+A

make the threshold

q̄ larger. Intuitively, this is when the potential falls in asset prices and in net worth in the

low state absent risk-sharing become smaller relative to the costs of additional investments.

Combining these two observations, we obtain the conditions (i) and (ii) on the primitives

under which the equilibrium is more likely to be in the “no risk-sharing” regime.

4.3 Takeaways

To the best of our knowledge, this is the first model to put a central emphasis on the role

of liquidity in secondary markets, where macro-contingent claims can be traded, for aggre-

gate fluctuations. We showed how the presence of information-trading frictions in secondary

markets, and their interaction with financial constraints, can distort aggregate risk-sharing

and aggregate investment, and exacerbate asset price and output volatility. The magnitude

of these effects will depend on a number of primitives of the environment. Namely, we should

expect less risk-sharing and greater amplification of shocks when: (i) secondary markets for

contingent claims are more relevant, i.e., re-trading claims is important; (ii) these markets

are more frictional, i.e., there are more disagreements about how to value contingent claims

and competition is lower; and (iii) the gains from transferring aggregate risks to investors are

lower, i.e., fluctuations in asset prices and net worth are expected to be smaller.

These results can help interpret some of the observed dynamics in the run-up to the 2008-09

financial crisis (Baily et al., 2008; Brunnermeier, 2009). A puzzling feature of this episode

was the financial sector’s heavy exposure to real-estate risks, despite the availability of various

structured products (e.g., MBS) and credit default swaps (CDS) that could in principle help

share these risks with the broader population. Although pooling of many mortgages together

helped ameliorate risks associated with individual borrower defaults, and thus adverse selec-

tion problems stemming from it, this process did not eliminate the downside risk from housing

price declines. During the years of rising asset prices, banks were able to share some (though

not all) of these risks through issuance/purchase of structured products and CDS. In 2007,

however, things changed dramatically when uncertainty over asset prices suddenly increased,
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and it became harder for banks to continue off-loading some of their real-estate exposures to

investors. The inability to share real-estate risks effectively was in turn essential in the bal-

ance sheet effects that unfolded following the Lehman’s collapse in September 2008. Note that

these dynamics are consistent with the model’s key ingredients: (i) the secondary markets for

real-estate contingent claims were important; (ii) these claims were traded in frictional over-

the-counter markets, where disagreements about how to value real-estate contingent securities

became larger in 2007; and (iii) it has been argued that the risks of large declines in aggre-

gate housing prices were underestimated ex-ante, making the gains from risk-transfer appear

smaller. Even though our model is stylized and abstracts from a number of other frictions

and institutional details, it does provide a comprehensive framework for thinking about the

build-up to and the subsequent unfolding of the crisis. As we discuss in Section 5.2, the model

also sheds light on several government interventions implemented in the midst of the crisis.

Our theory resonates well with (and formalizes) the views of Case et al. (1991) and Shiller

(1994), who have long argued that lack of liquidity in markets for real-estate contingent

claims is what inhibits risk-sharing and has a destabilizing effect on the business cycle.14

Indeed, through the lens of our model, some of Robert Shiller’s subsequent work, consisting

of creation of improved real-estate indices and promotion of centralized platforms for real-

estate derivatives, can be understood as a way to ameliorate the effects of information-trading

frictions in markets, by boosting information aggregation and competition in them.

Our theory relies on the interaction of financial frictions, which are by now standard in the

literature; with information-trading frictions, which are an innovation of this paper. Whereas

the former is behind generating gains from aggregate risk-sharing, the latter is key in dis-

torting it. The microfoundations for these distortions have taught us several lessons. First,

that the “liquidity” of a given entrepreneur’s claims is an equilibrium object that depends

on the aggregate supply of state-contingent claims in the economy: e.g., it is cheaper for

an entrepreneur to issue a claim against the high state when investors are endowed with

relatively few claims against that state, and vice versa.15 Second, that information-trading

frictions not only distort the allocation of aggregate risk between entrepreneurs and investors,

but also its allocation among investors, as some impatient investors inefficiently retain risky

claims. Third, that the magnitude of these distortions depends on the extent of information

frictions and of competition in secondary markets, which are likely to vary over time and

across economies with differing financial market development. Finally, as we show next, that

mispricing/misallocation of aggregate risk originates from information-trading frictions in sec-

14Caballero (2003) and Mian (2013), respectively, express related views on the role of markets for indexed
government bonds in emerging economies and for indexed household mortgages in the US.

15Note that in our economy the aggregate supply of claims consists only of those on the entrepreneurial
sector; in a richer setting, investors may also hold claims on their future labor income or other financial income.
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ondary markets also has important distributional consequences, suggesting that some market

participants may naturally oppose (uncompensated) reforms aimed at alleviating their effects.

Proposition 4 (Rent-Extraction) In equilibrium, the investors’ lifetime welfare satisfies:

U I = e+ (1− λ)W ({Bt(s)}, µ∗) ≤ e+ λζ+(B1(h)−B1(l)), (24)

where the last inequality is an equality if and only if the optimal trading arrangements allocate

the claims efficiently. In particular, whereas the entrepreneurs’ welfare weakly decreases, the

investors’ welfare can increase in the severity of information-trading frictions.

Proposition 4 states that, in equilibrium, investors extract rents from entrepreneurs, and

that the extent to which they can do so also depends on the aggregate supply of claims. It

is clear that investors cannot extract rents from entrepreneurs when the information-trading

frictions are so severe that the aggregate supply is non-contingent (i.e., λζ+ > π(h) − q̄),

as non-contingent claims are always priced fairly. Instead, when information frictions are

not too severe (i.e., λζ+ < π(h) − q̄), the aggregate supply is state-contingent, and investors

demand compensation for the potential mispricing/misallocation of these claims in secondary

markets. However, in equilibrium, the mispricing of these claims ex-post does not generate

a welfare loss to investors ex-ante; hence, the compensation received from entrepreneurs for

the mispricing (though not for the misallocation) of claims is a pure rent earned by investors.

These observations will play an important role in the policy analysis of the next section.

5 Constrained Efficiency and Policy

In this section, we study the efficiency properties of the equilibrium. To do so, we first solve

the problem of a social planner, who chooses allocations to maximize the lifetime welfare of

entrepreneurs, subject to the information and incentive constraints faced by the agents, and

subject to delivering investors the same lifetime welfare U as in the laissez-faire equilibrium;

thus, we search for Pareto-improvement upon the equilibrium. Second, we derive our main

inefficiency result by comparing the planner’s solution to the laissez-faire equilibrium. Fi-

nally, we show how to decentralize the constrained efficient allocations through government

interventions in secondary markets.

5.1 Constrained Efficient Allocations and Equilibrium Inefficiency

The planner chooses an investment scale k0, continuation scales {k1(s)}, transfers to the

investors at the issuance stage, T0, and at t ∈ {1, 2}, {Tt(s)}, and allocates {k0− k1(s)} units

28



of capital to the traditional sector, and the remaining goods each period to the entrepreneurs.

In addition, the planner designs optimal trading arrangements, µ, where investors can re-trade

their claims (rights) to the transfers {Tt(s)}. The planner faces the same set of pledgeability

and information-trading frictions as the agents. When necessary, in order to avoid confusion,

we will use the superscript SP to denote the planner’s allocations.

Formally, the planner’s problem is to maximize the expected welfare of entrepreneurs:

max
k0,T0,{k1(s),Tt(s)},µ

e− χ(k0)− T0 +
∑
s

π(s) [(a(s)k0 − T1(s) + gA (k0 − k1(s)) + Ak1(s)− T2(s)]

(P3)

subject to the following set of constraints:

0 ≤ T0 + χ(k0) ≤ e, (25)

0 ≤ T1(s) ≤ a(s)k0 ∀s, (26)

0 ≤ T2(s) ≤ gA(k0 − k1(s)) ∀s, (27)

0 ≤ k1(s) ≤ k0 ∀s, (28)

µ ∈M, (29)

U ≤ U I = T0 + λV ({Tt(s)}, µ) + (1− λ)

(
W ({Tt(s)}, µ) +

∑
s

π(s)(T1(s) + T2(s))

)
. (30)

Constraints (25)-(27) are the economy’s resource constraints combined with the limited

pledgeability friction, which states that at t = 2 the planner can allocate to investors only the

output produced by the traditional sector as entrepreneurs can always divert their output.

Constraint (28) imposes feasibility on the economy’s allocation of capital at t = 1.

Constraint (29) states that the trading arrangements that the planner designs on investors’

behalf must be feasible, i.e., she is also subject to the information-trading frictions when

reallocating the claims to the transfers {Tt(s)} among investors. Let us unbundle what this

entails. In particular, recall that each trading arrangement (and without loss assume that all

of the planner’s arrangements are identical) is a direct revelation mechanism, which solicits

reports from n traders and then allocates claims to and collects payments from them based

on these reports. Let ASP (θi, θ−i) ≡
(
ωSP (θi, θ−i) ,

{
vSPs (θi, θ−i)

})
denote the allocation of

trader i who has observed signal xi and reports θi to the mechanism when other traders report

θ−i, where ωSP (θi, θ−i) is the payment that trader i makes to the planner’s mechanism and

vSPs (θi, θ−i) are the units of claims for state s that the mechanism transfers to the trader.16

16We drop superscript i from the planner’s mechanism allocations, as it is without loss to focus on allocations
that depend on the traders’ reports but not on their identity.
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This trader’s payoff from accepting his allocation is:

U(xi,ASP (θi, θ−i)) =
∑
s

vSPs (θi, θ−i) · P(s|xi,ASP (θi, θ−i))− ωSP (θi, θ−i). (31)

First, the planner needs to ensure that traders are willing to participate in the mechanism

after learning their equilibrium allocations:

U(xi,ASP (xi, x−i)) ≥ 0 ∀xi, x−i. (32)

Second, it must be incentive compatible for each trader to report his signal truthfully to the

planner’s mechanism, given that other traders do so as well:

E{U(xi,ASP (xi, x−i))|xi} ≥ E
{

max{0, U(xi,ASP (θi, x−i))}|xi
}
∀xi, θi. (33)

Finally, the planner’s allocation of claims within each mechanism cannot exceed the total

claims available in it: ∑
i

vSPs (θi, θ−i) ≤ T1(s) + T2(s) ∀s, θi, θ−i. (34)

Observe that the constraints (32)-(34) are essentially the same as the constraints (10)-(12)

in the investor’s problem (P2); the only difference is that the planner’s trading arrangements

reallocate claims to the transfers {Tt(s)} rather than those issued by the entrepreneurs.17

Constraint (30) states that the planner must deliver each investor an ex-ante welfare of

at least U . Here, V
(
{Tt(s)}, µSP

)
denotes the ex-ante expected payoff to the investor from

posting the claims {Tt(s)} in the trading arrangement µSP designed by the planner (which

occurs with probability λ), whereas W
(
{Tt(s)}, µSP

)
denotes the ex-ante net expected payoff

to the investor from participating as a trader in the planner’s trading arrangement (which

occurs with probability 1 − λ). Given the claims to the transfers {Tt (s)} and the trading

arrangement µSP =
{
ASP (xi, x−i)

}
xi,x−i

, these payoffs are computed as follows:

V
(
{Tt(s)}, µSP

)
= E

{∑
i

ωSP (xi, x−i)

}
(35)

and

W
(
{Tt(s)}, µSP

)
= E

{
U(xi,ASP (xi, x−i))

}
. (36)

17We again omit the constraint that traders have sufficient resources to participate in the trading arrange-
ments. Assumption 1 will ensure that this is the case at the social optimum (see Appendix B).
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We note the key difference between the planner’s and the investor’s problems. As we

discussed in Section 2.4, when choosing {dt(s)} and µ in problem P2, each investor takes

as given the equilibrium claims (i.e., {Bt(s)}) and trading arrangements (i.e., µ∗) of other

investors, and thus his payoff W̃ = W ({Bt(s)}, µ∗). In sharp contrast, the planner designs

the claims and the trading arrangements on behalf of all investors; as a result, she internalizes

that by adjusting {Tt(s)} and µSP she affects the payoff W ({Tt(s)}, µSP ) as well. As we will

see, the dependence of W on the joint design of claims and trading arrangements will be the

source of externality that underlies the inefficiency of the laissez-faire equilibrium.

We now proceed to characterize the solution to the planner’s problem, and we begin by

studying the implications of information-trading frictions, as captured by the constraints (29)

and (30), for the planner’s problem (P3). The following lemma shows that the ex-ante welfare

of the investors depends on how the claims are allocated, rather than on how they are priced

in trading arrangements.

Lemma 5 Fix a feasible trading arrangement µSP and transfers {Tt(s)}. Then:

λV
(
{Tt (s)} , µSP

)
+ (1− λ)W

(
{Tt (s)} , µSP

)
= λ

∑
s

π(s)E

{∑
i

vSPs
(
xi, x−i

)
|s

}
. (37)

Since the trading arrangements and the claims traded in them are identical for all investors,

the payments (i.e., the ωSP ’s in the mechanism allocations) that an investor expects to receive

from his arrangement are equal to those he expects to make when participating as a trader in

the arrangements of other investors; hence, these payments net out. The investors’ welfare,

however, does depend on how the claims are allocated in the arrangements (i.e., the vSPs ’s in

the mechanism allocations). In particular, as we see from equation (37), the welfare is higher

when the investors expect that the trading arrangements will allocate more claims to them

as traders, since in that case they do value consumption at future dates. But then, using the

constraint (34), it follows that the investors’ welfare is highest when the arrangements allocate

all of the claims to the transfers {Tt(s)} to the traders, as stated in the next corollary.

Corollary 4 Fix a feasible trading arrangement µSP and transfers {Tt(s)}. Then:

λV
(
{Tt (s)} , µSP

)
+ (1− λ)W

(
{Tt (s)} , µSP

)
≤ λ

∑
s

π(s)(T1(s) + T2(s)), (38)

with equality if and only if µSP allocates the claims to the transfers efficiently.

Note that, for given transfers {Tt(s)}, the choice of trading arrangement only enters the

planner’s problem through the constraints (29) and (30). Therefore, by Corollary 4, if it were
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possible for the planner to design a feasible trading arrangement that is also able to allocate the

claims to the transfers efficiently, then such a trading arrangement must be socially optimal.

The next lemma states that such a design is indeed possible.

Lemma 6 Fix transfers {Tt(s)}, then there exists a feasible trading arrangement µSP that

allocates the claims to these transfers efficiently. Such a trading arrangement is optimal for

the social planner, and it implies investor welfare of:

U I,SP = T0 +
∑
s

π(s) (T1(s) + T2(s)) . (39)

From the constraint (30) in the planner’s problem and Corollary 4, it is clear that the

right-hand side of equation (39) is the upper bound on the investors’ welfare, and that this

upper bound is attained by µSP if it existed. That such a trading arrangement exists is

proved through the following example. Suppose that µSP allocates a share n−1 of the claims

to the transfers to each of the n traders in the arrangement; that is, vSPs (xi, x−i) = n−1 ·
(T1(s) + T2(s)) ∀s, xi, x−i. By construction, µSP satisfies the constraints given by (34) and

it also allocates the claims efficiently. Next, suppose that µSP collects from each trader a

payment equal to the expected value of the claims allocated to him, conditional on the worst

possible report of that trader and the actual reports of other traders; that is, ωSP (xi, x−i) =

n−1 · minx E{T1(s) + T2(s)|xi = x, x−i} ∀xi, x−i. By construction, the proposed allocations

satisfy the participation constraints given by (32), as each trader expects to extract non-

negative rents from the trading arrangement conditional on knowing his allocation; and the

incentive compatibility constraints given by (33), as neither the payment collected from a

trader nor the allocation of claims to him depend on his actual report. Thus, the proposed

trading arrangement µSP is feasible and it allocates the claims to the transfers efficiently.

Now that we know how the planner optimally allocates a given set of transfers {Tt(s)}
through trading arrangements, we can study its implications for the planner’s optimal invest-

ment and allocation of capital. We first make some useful definitions. Let k̃U > 0 be the

largest investment scale the planner can achieve with no capital liquidations and by deliver-

ing investors welfare U , i.e., χ(k̃U) =
∑

s π(s)a(s)k̃U + e − U . Next, we define the planner’s

effective value of capital at t = 1 as:

pSPU =


A if

∑
s π(s)a(s) + A ≤ χ′(k̃U)

χ′(k̃U)−
∑

s π(s)a(s) if
∑

s π(s)a(s) + gA ≤ χ′(k̃U) <
∑

s π(s)a(s) + A

gA if χ′(k̃U) <
∑

s π(s)a(s) + gA

. (40)

The following lemma completes the characterization of the planner’s problem.
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Lemma 7 The social planner’s investment scale is given by:

χ′(kSP0 ) =
∑
s

π(s)a(s) + pSPU , (41)

and she liquidates capital if and only if pSPU = gA, in which case her continuation scale is:

kSP1 (h) = kSP1 (l) = kSP0 −
U −

(
e− χ(kSP0 ) +

∑
s π(s)a(s)kSP0

)
gA

. (42)

By allocating the claims efficiently in trading arrangements, the planner effectively faces

undistorted “claims prices” when allocating consumption goods between entrepreneurs and

investors across states (Lemma 6). As a result, she finds it optimal to attain full risk-sharing

between entrepreneurs and investors by equalizing the effective value of capital across states.

Despite attaining full risk-sharing, however, the planner’s ex-ante investment scale may still

be depressed (relative to first-best) and she may choose to liquidate capital prematurely. The

reason is that the planner cannot extract the final output from entrepreneurs but she must

still deliver investors a welfare of U , which increases with the rents that investors extract from

entrepreneurs at equilibrium (see Proposition 4). As a result, when the intermediate cashflows

are insufficient to deliver to investors a lifetime welfare of U , the planner has two options:

she can reduce ex-ante investment (increase T0) and/or increase ex-post capital liquidations

(increase {T2(s)}) to transfer goods to investors. From Lemma 7, we see that the planner

under-invests relative to first-best when χ′(k̃U) <
∑

s π(s)a(s) +A, and she liquidates capital

when χ′(k̃U) <
∑

s π(s)a(s) + gA, which are more likely to occur for higher values of U .18

We are now ready to utilize the above characterization of the planner’s problem, in con-

junction with the results in Sections 3 and 4, to state our main normative result.

Proposition 5 (Inefficiency) The equilibrium of the economy with information-trading fric-

tions is generally constrained inefficient.19 In sharp contrast, the equilibrium of the benchmark

economy is constrained efficient.

Consider first the equilibrium of the benchmark economy. In that economy, the investors

do not earn rents and their lifetime welfare is U = e. By inspection of the planner’s problem

for U = e, we immediately see that the allocations of the benchmark economy coincide with

the planner’s and are thus constrained efficient. Hence, we can conclude that any inefficiency

18Observe that Assumption 2(i) ensures that when U = e the planner does not liquidate capital, since

χ′(k̃U )|U=e ≥
∑

s π(s)a(s) + gA.
19The only scenario in which equilibrium could be constrained efficient is when both the allocation of claims

in markets is efficient, and the supply of claims satisfies B1(s) = a(s)K0 ∀s, despite mispricing (see proof).
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of the laissez-faire equilibrium must be due to information-trading frictions, which introduce

mispricing/misallocation of aggregate risk.

To identify the source of inefficiency introduced by information-trading frictions, we com-

pare the planner’s allocations with those of the laissez-faire equilibrium. Recall that, when

designing claims and trading arrangements in problem (P2), each investor tries to minimize

the mispricing of his claims due to rent-extraction by traders in his trading arrangement,

but he takes as given the rents she will extract from other investors; that is, the investor

maximizes the payoff V ({dt(s)}, µ) while taking as given the equilibrium payoff W̃ , since the

latter is determined in equilibrium by the joint design of claims and trading arrangements of

other investors, i.e., W̃ = W ({Bt(s)}, µ∗). The planner instead designs claims and trading

arrangements on behalf of all investors. Thus, when solving problem (P3), she internal-

izes that, although the investors’ payoff V ({Tt(s)}, µSP ) is lower when the claims are more

state-contingent and the trading arrangements are more efficient, this decline is offset by the

resulting increase in the investors’ payoff W ({Tt(s)}, µSP ). As we have seen, once the planner

internalizes this effect, she opts for trading arrangements that are efficient (Lemma 6) and,

conditional on such arrangements, she finds it optimal to achieve full aggregate risk-sharing

between entrepreneurs and investors, though the level of her ex-ante investment and continu-

ation scales may still be depressed relative to first-best due to both limited pledgeability and

need to deliver the rents U − e that investors earned at equilibrium (Lemma 7).

5.2 Policy Implications

In this section, we explore the implications of our theory for optimal corrective policy. From

the previous analysis, it should be clear that in order to decentralize the planner’s allocations,

it suffices to search for policies that incentivize investors: (i) to allocate the claims efficiently in

secondary markets, and (ii) to price them in an undistorted manner ex-ante; while respecting

the primitive frictions faced by the agents in the laissez-faire equilibrium. In what follows, we

propose government interventions in secondary markets that achieve these objectives.

Proposition 6 The constrained efficient allocations can be decentralized through a subsidy,

S ({dt(s)}, µ) = nW ({dt(s)}, µ), given to a seller who chooses ({dt(s)}, µ), financed with lump

sum taxes on the sellers of claims. To ensure that the intervention is Pareto improving, the

government needs to make a lump sum transfer U−e from entrepreneurs to investors ex-ante.

Given the subsidy, the privately optimal arrangement can now be shown to maximize the

expected payoff V ({dt(s)}, µ) +nW ({d(s)}, µ) instead of just V ({dt(s)}, µ). The investor will
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therefore find it optimal to choose the efficient trading arrangement µSP , since:

max
µ∈M

V ({dt(s)}, µ) + nW ({dt(s)}, µ) = V ({dt(s)}, µSP ) + nW ({dt(s)}, µSP )

=
∑
s

π(s)(d1(s) + d2(s)), (43)

where the last equality holds as the losses of an efficient trading arrangement must equal the

rents of the traders. Moreover, as the investors will now value the claims (in expectation)

at
∑

s π(s)(d1(s) + d2(s)), independently of whether they sell or keep them, the intervention

will also ensure that in equilibrium the claims prices are undistorted, i.e., q(s) = π(s) ∀s.
The government finances the intervention through a lump sum tax on all sellers equal to

S({Bt(s)}, µSP ), where {Bt(s)} are the aggregate claims supplied by entrepreneurs after the

intervention. Therefore, as the subsidy is fully financed by the sellers, and as it corrects the

mispricing/misallocation of claims in secondary markets, this intervention also eliminates the

rents that the investors were able to extract from entrepreneurs in the laissez-faire equilibrium

(see Proposition 4). Hence, to deliver these rents back to them, the government makes a

transfer of U − e from entrepreneurs to investors at the issuance stage ex-ante.

Albeit abstract, the policy described in Proposition 6 is conceptually very clear: the con-

structed subsidy simply makes each seller internalize the effects of his choice of claims and

trading arrangements on the buyers of claims. Nevertheless, as we show next, one can also

decentralize the planner’s allocations through policies with a closer “real-world” counterpart.

Proposition 7 The constrained efficient allocations can be decentralized through government

purchases and sales of risky claims within each trading arrangement, financed with lump sum

taxes on the sellers of claims. To ensure that the intervention is Pareto improving, the gov-

ernment needs to make a lump sum transfer U − e from entrepreneurs to investors ex-ante.

An alternative to subsidizing the joint design of claims and arrangements, as in Proposition

6, is to intervene in secondary markets through purchases and sales of claims. In the proof, we

show that such an intervention takes the following form: the government enters each trading

arrangement and offers to purchase its claims {dt(s)} at some price ω̄({dt(s)}) to then resell

these claims to the traders in that same arrangement at price ω({dt(s)}) = minx E{d1(s) +

d2(s)|∀i xi = x} ≤ ω̄({dt(s)}). By reselling the claims at their lowest possible valuation, ω, the

government ensures that it always allocates the purchased claims to the traders. By selecting

the appropriate “price floor” of the arrangement, ω̄, the government ensures that the seller

always allocates the claims either to the traders (at prices above ω̄) or to the government (at

price ω̄), and that she receives the fair value for them. The intervention thus corrects both the

mispricing and the misallocation of claims in secondary markets, thereby also eliminating the
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distortion in the pricing of claims ex-ante, i.e., q(s) = π(s) ∀s. The price difference, ω̄ − ω, is

effectively a subsidy that the government extends to each seller of claims in secondary markets

when the price of his claims would otherwise be too low, and it is zero when the claims in the

arrangement are non-contingent. As with the intervention in Proposition 6, the government

finances these subsidies through lump sum taxes levied on the sellers of claims in secondary

markets, and it transfers U − e from entrepreneurs to investors at the issuance stage ex-ante.

An interesting and appealing feature of the above asset purchase/sale scheme is that it is

more likely to be triggered and is larger in bad aggregate states of nature, since in those states

the number of pessimists in the market is larger, depressing the prices of contingent claims.

Moreover, this intervention is broadly consistent with a number of policies implemented in

the midst of the global financial crisis, whereby governments stepped-in to support trade in

securities exposed to real-estate risks, which were perceived to be undervalued by the market,

through programs such as TAF and TARP (Baily et al., 2008; Blanchard, 2009; Brunnermeier,

2009). Our model suggests that, beyond directly boosting liquidity in secondary markets,

anticipation of such policies can help spread real-estate related risks more evenly throughout

the population, ameliorating balance sheet effects and their repercussions for the real economy.

Finally, we find it useful to relate our normative findings to the recently growing literature

on pecuniary externalities in models with financial constraints (e.g., Caballero and Krishna-

murthy (2003); Lorenzoni (2008); Korinek (2011); Bianchi (2011)). An often-drawn conclusion

from this literature is that, because borrowers do not internalize their contribution to balance

sheet effects ex-post, they tend to borrow excessively ex-ante, which in turn justifies the by-

now conventional macro-prudential policies such as leverage limits or capital requirements.

Dávila and Korinek (2017) disect the pecuniary externalities in this class of models and show

that they arise either because capital prices enter directly into financial constraints, or be-

cause movements in capital prices redistribute wealth between borrowers and creditors. These

pecuniary externalities are intentionally not present in our setting,20 which has allowed us to

clearly isolate the novel externality originating from the pricing and allocation of aggregate

risk in secondary markets. Moreover, as we show next, this novel externality can itself be a

source of “inefficient credit booms”.

Proposition 8 The laissez-faire equilibrium can feature excessive borrowing and investment

ex-ante relative to second-best, i.e., the decentralized equilibrium under the optimal corrective

policy of either Proposition 6 or Proposition 7.

This result can be understood by comparing the determinants of the investment scale in the

20First, the financial constraint faced by entrepreneurs is b2(s) ≤ 0 ∀s, which does not feature capital prices.
Second, the traditional sector firms make zero profits and, thus, movements in equilibrium prices of capital do
not generate wealth transfers between entrepreneurs and investors.
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laissez-faire equilibrium (equation (23)) with that of the planner (equation (41)). There are

two differences. On the one hand, the distortion in equilibrium claims prices has a depressing

effect on K0, as q(h) < π(h). On the other hand, the resulting distortion to risk-sharing

leads to fluctuations in capital prices, p(h) ≥ pSPU ≥ p(l), which we show can push K0 above

kSP0 . Intuitively, even though the planner faces a higher average return to investment (due to

better risk-sharing), the marginal return to investment can be higher at equilibrium because

the additional investments are liquidated only in the low state.

The takeaway from the above result is that policymakers should exercise extra caution when

attempting to moderate seemingly excessive booms that are anticipated to lead to balance

sheet effects and severe economic contractions. Although the conventional macro-prudential

policies and the policy interventions proposed in Propositions 6 and 7 may both moderate

credit expansions and stabilize output, only the latter policies are optimal when misallocation

of aggregate risk originates from the secondary market frictions emphasized in this paper.21

Therefore, consistent with the theory of the second-best, understanding the underlying source

of equilibrium inefficiency is crucial for thinking about the design of optimal corrective policy.

6 Concluding Remarks

This paper develops a theory of the balance sheet channel that places a central emphasis

on the liquidity of secondary markets for macro-contingent claims. We show that the pres-

ence of dispersed information and imperfect competition in these markets, interacted with

financial constraints, results in mispricing and misallocation of aggregate risk, distorts aggre-

gate investment, and exacerbates asset price and output volatility. Our theory implies that

the magnitude of balance sheet amplification effects should be tied to the severity of these

information-trading frictions, which are likely to vary over time, markets, and economies. The

laissez-faire equilibrium is constrained inefficient due to a novel externality originating from

rent-extracting behavior of agents in secondary markets. Optimal corrective policy boosts

secondary market liquidity by subsidizing trade in state-contingent claims, which in turn

enhances aggregate risk-sharing and stabilizes the business cycle. Our theory is therefore con-

sistent with a number of calls for policy makers to enhance risk-sharing through interventions

in markets for macro-contingent claims (Case et al., 1991; Shiller, 1994; Caballero, 2003; Mian,

2013). By formalizing the source of illiquidity in these markets, our theory sheds light on the

type of policy interventions that can achieve this objective.

21A related point has been recently made by Kurlat (2018), who shows that policy implications of canonical
models with financial constraints are reversed if the markets for capital suffer from an adverse selection problem
à la Akerlof (1970).
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A Proofs for Sections 3-5

Proofs of Lemmas 1 - 4. See text.

Proof of Proposition 1. In what follows, we first establish the properties (i)-(iii) stated
in Proposition 1 for a generalized investor signal structure, in order to illustrate the broad
economic forces that generate mispricing/misallocation of claims in secondary markets. We
will then compute the allocations of the optimal mechanism explicitly for the binary signal
structure assumed in the paper.

Let X = {x1, ..., xM} denote the set of the traders’ signals, where M ≥ 2 and where P(s =
h|xi = x) is increasing in x, i.e., traders with higher signals are more optimistic about the
aggregate state. We will also allow the mechanism to have access to some external imperfectly
informative signal y about the aggregate state (e.g., public information, seller’s signal), which
takes values in some set Y = {y1, ..., yN} ⊂ R, has the property that P(s = h|y) ∈ (0, 1)
is increasing in y, and is conditionally independent of the traders’ signals. The case of no
external signal is captured by assuming that Y is a singleton. The mechanism design problem
is in the text, except that the allocations of trader i can also be conditioned on y ∈ Y , i.e.,
Ai(xi, x−i, y) = (ωi(xi, x−i, y), {vis(xi, x−i, y)}).

Part (i). Any mechanism µ for trading claims {v(s)} that satisfies the participation and the
feasibility constraints (PC) and (FC), given by (10) and (12), must also satisfy V ({v(s)}, µ) ≤
E{v(s)}. Thus, E{v(s)} is the upper bound on the value of the mechanism. If a mechanism
µ reaches this upper bound, i.e., V ({v(s)}, µ) = E{v(s)}, then we say that mechanism µ
achieves full surplus extraction. Such a mechanism must clearly be optimal.

When the investor’s portfolio of claims is non-contingent, i.e., v(h) = v(l), the optimal
mechanism clearly achieves full surplus extraction. For example, consider the mechanism
with the following allocations: vis(x

i, x−i, y) = ωi(xi, x−i, y) = n−1v(l) for all s, i, xi, x−i, and
y. Thus, non-contingent claims must be traded fairly and allocated efficiently w.p.1. We are
therefore left to study the case where v(h) 6= v(l). We will do so in two steps.

First, we show that full surplus extraction is impossible in any mechanism that satisfies the
participation, incentive compatibility and feasiblity constraints (10)-(12).

Lemma A.1 Let µ∗ be an optimal mechanism for trading claims {v(s)}, and assume that
v(h) 6= v(l). Then, V ({v(s)}, µ∗) < E{v(s)}.

Proof. Suppose to the contrary that V ({v(s)}, µ∗) = E{v(s)}, and consider the associated
allocations Ai (xi, x−i, y) = (ωi (xi, x−i, y) , {vis (xi, x−i, y)}). Also, suppose that v(h) > v(l);
the argument for v(h) < v(l) is analogous.

First, full surplus extraction implies that U i (xi,Ai (xi, x−i, y)) = 0 for all i, xi, x−i, y and∑
i∈I v

i
s (xi, x−i, y) = v (s) for all xi, x−i, y, s, i.e., in the optimal mechanism the traders’ rents
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must be zero and the claims must be allocated efficiently. To see this, from (10) and (12):

V ({v(s)}, µ∗) = E

{∑
i∈I

ωi
(
xi, x−i, y

)}

≤ E

{∑
i∈I

∑
s

vis
(
xi, x−i, y

)
· P
(
s|xi,Ai

(
xi, x−i, y

))}

= E

{
E

{∑
i∈I

∑
s

vis
(
xi, x−i, y

)
· P
(
s|xi,Ai

(
xi, x−i, y

))
|xi, x−i, y

}}

= E

{
E

{∑
i∈I

∑
s

vis
(
xi, x−i, y

)
· P
(
s|xi, x−i, y

)
|xi, x−i, y

}}

≤ E

{
E

{∑
s

v (s) · P
(
s|xi, x−i, y

)
|xi, x−i, y

}}
= E {v (s)} , (44)

where the first inequality is strict if U i (xi,Ai (xi, x−i, y)) > 0 for some i, xi, x−i, y, and the
second inequality is strict if

∑
i∈I v

i
s (xi, x−i, y) < v (s) for some xi, x−i, y, s.

Second, we find a profitable deviation for a trader to misreport his signal. Since by the
argument above U i (xi,Ai (xi, x−i, y)) = 0 for all i, xi, x−i, y, incentive compatibility requires
that U i (xi,Ai (θi, x−i, y)) ≤ 0 for all i, xi, θi, x−i, y. To reach a contradiction, we will now
show that U i (xi,Ai (θi, x−i, y)) > 0 for some i, xi, θi, x−i, y. Note that:

U i
(
xi,Ai

(
θi, x−i, y

))
=
∑
s

vis
(
θi, x−i, y

)
· P
(
s|xi,Ai

(
θi, x−i, y

))
− ωi

(
θi, x−i, y

)
=
∑
s

vis
(
θi, x−i, y

)
·
(
P
(
s|xi,Ai

(
θi, x−i, y

))
− P

(
s|θi,Ai

(
θi, x−i, y

)))
for all i, xi, θi, x−i, y, since U i (θi,Ai (θi, x−i, y)) = 0. Observe that (i) P (h|xi,Ai (θi, x−i, y)) T

P (h|θi,Ai (θi, x−i, y)) whenever xi T θi since the allocation cannot perfectly reveal the state,

and (ii) for all xi, x−i, y, we have that vih (xi, x−i, y) > vil (xi, x−i, y) for some i because, as we
have argued above,

∑
i v

i
h (xi, x−i, y) = v (h) > v (l) =

∑
i v

i
l (xi, x−i, y) for all xi, x−i, y. From

(ii), there exist i and x̂ < xM such that vih (x̂, x−i, y) > vil (x̂, x−i, y) for some x−i, y; in other
words, the mechanism must allocate more claims in the high than in the low state to some
trader with signal other than highest (e.g., in the events that no trader has received signal
xM). Combining with (i), we have that U i (xM ,Ai (x̂, x−i, y)) > 0, and it is sub-optimal for
trader i who has received signal xM to report his signal truthfully.

Next, we show that the losses of the optimal mechanism must be proportional to the con-
tingency of the investor’s portfolio of claims.
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Lemma A.2 Let µ∗ be an optimal mechanism for trading claims {v(s)}. Then,

V ({v(s)}, µ∗) =
∑
s

π(s)v(s)− ζ|v(h)− v(l)|,

where ζ =

{
ζ+ if v(h) ≥ v(l)

ζ− if v(h) < v(l)
, and ζ+ ∈ (0, π(h)) , ζ− ∈ (0, 1− π(h)) are scalars.

Proof. Suppose that v(h) > v(l); the argument for v(h) < v(l) is analogous. Denote by
Ai (xi, x−i, y) = (ωi(xi, x−i, y), {vis(xi, x−i, y)}) the allocations of the optimal mechanism.

Define ṽis(x
i, x−i, y) ≡ vis(xi,x−i,y)−n−1v(l)

v(h)−v(l)
and ω̃i (xi, x−i, y) =

ωi(xi,x−i,y)−n−1v(l)

v(h)−v(l)
for all i, xi, x−i, y,

and consider the modified allocations Ãi (xi, x−i, y) = (ω̃i (xi, x−i, y) , {ṽis (xi, x−i, y)}). Then
the design problem can be re-written as follows:

V ({v (s)} , µ∗) = v (l) + (v (h)− v (l)) ·max{ṽis,ω̃i}E

{∑
i∈I

ω̃i
(
xi, x−i, y

)}

subject to:∑
s

ṽis
(
xi, x−i, y

)
· P
(
s|xi, Ãi

(
xi, x−i, y

))
≥ ω̃i

(
xi, x−i, y

)
for all i, xi, x−i, y,

E
{
U i(xi, Ãi(xi, x−i, y))|xi

}
≥ E

{
max

{
0, U i(xi, Ãi(θi, x−i, y)

}
|xi
}

for all i, xi, θi,

and ∑
i∈I

ṽis
(
xi, x−i, y

)
≤ ṽ (s) for all xi, x−i, y, s,

where ṽ(l) = 0 and ṽ(h) = 1. It follows that:

V ({v (s)} , µ∗) = v (l) + (v (h)− v (l)) · V ({ṽ(s)}, µ̃∗)

where µ̃∗ is the optimal mechanism for trading the claims {ṽ(s)}. Since this mechanism also
satisfies the constraints (10), (11) and (12), full surplus extraction is also not possible in
this mechanism (see Lemma A.1), and thus V ({ṽ(s)}, µ̃∗) < π(h). Also, V ({ṽ(s), µ̃∗}) > 0
because the mechanism designer always has the option to trade the claims at the expected
valuation of the trader with the lowest signal, which is strictly positive. We define ζ+ ≡
π(h) − V ({ṽ(s)}, µ̃∗) ∈ (0, π(h)). Analogous arguments imply that ζ− ∈ (0, 1 − π(h)). Note
that by construction the scalars ζ+, ζ− depend only on the trading friction, n, the distribution
over the signals {P(x, y|s)}x,y,s, and the distribution over the state, {π(s)}s
Part (ii). The traders’ participation constraint (10) implies that their ex-ante expected payoff
W ({v(s)}, µ∗) is non-negative. It is also clear that the traders’ expected payoff cannot ex-
ceed the expected losses of the mechanism. That the mechanism may trade the claims with
probability less than one and, thus, allocate them inefficiently is shown in Lemma A.3 below.

Part (iii). That the scalars ζ+ and ζ− monotonically decline to zero as n grows large fol-
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lows from two simple observations. First, the mechanism designer always has the option to
disregard a trader’s signal and set his allocations to zero; thus, the value of the mechanism
must be non-decreasing in the number of traders. Second, it is straightforward to construct a
mechanism in which the traders’ rents go to zero as n grows to ∞; hence, this must also hold
in the optimal mechanism. To this end, consider a mechanism, which allocates to each trader
n−1v(s) units of claims for state s, and asks each trader to pay the expected value of the claims
allocated to him, conditional on (i) the trader having received the ‘worst’ possible signal and
(ii) the other traders’ signals, i.e., ωi(xi, x−i, y) = minx

∑
s P(s|xi = x, x−i, y)n−1v(s). Clearly,

this mechanism satisfies the (PC), (IC), and (FC) constraints, and the expected value of the
mechanism increases monotonically to

∑
s π(s)v(s) with n.

Next, let us study what happens when information dispersion vanishes. Suppose first that
the private signals become uninformative, i.e., P(s|xi) goes to π(s) ∀s, xi, holding the distribu-
tion over the state, {π(s)}s, and over the external signal, {P(y|s)}y,s, fixed. Then, the following
mechanism satisfies (PC), (IC) and (FC) constraints and it clearly achieves full surplus extrac-
tion asymptotically: vis(x

i, x−i, y) = n−1v(s) and ωi(xi, x−i, y) = minx E{n−1v(s)|xi = x} →
E{n−1v(s)} as signals become uninformative.

Suppose second that the private signals become perfectly informative, i.e., P(s|xi) goes to ei-
ther 0 or 1 ∀s, xi, again holding the distribution over the state and the external signal fixed. Let
Ψ = {x ∈ X : P(h|x)→ 1} denote the set of signals that become perfectly informative of the
high state, and consider the following mechanism: vis(x

i, x−i, y) = 1{xi∈Ψ} · n−1v(s) + 1{xi 6∈Ψ} ·
n−1v(l) and ωi(xi, x−i, y) = 1{xi∈Ψ} ·minx∈Ψ E{n−1v(s)|xi = x}+1{xi 6∈Ψ} ·n−1v(l). Observe, the
trader has no incentive to misreport his signal and, moreover, E{

∑
i ω

i(xi, x−i, y)} → E{v(s)}
as signals become perfectly informative.

Finally, suppose that π(h) goes either to 1 or 0, holding the distribution over signals,
{P(x|s)}, fixed. It is clear that ζ+ (ζ−) goes to zero as π(h) → 0 (π(h) → 1), since ζ+ ∈
(0, π(h)) and ζ− ∈ (0, 1− π(h)) by Part (i). Next, consider the following feasible mechanism:
vis(x

i, x−i, y) = n−1v(s) and ωi(xi, x−i, y) = minx E{n−1v(s)|xi = x, x−i, y}. The expected
revenues of this mechanism clearly go to E{v(s)} when π(h)→ 1 and v(h) > v(l) (i.e., ζ+ is
the relevant discount), or when π(h)→ 0 and v(h) < v(l) (i.e., ζ− is the relevant discount).

We now return to the binary signal structure assumed in the main analysis (and without
an external signal), in order to provide an explicit characterization of the optimal mechanism:

Lemma A.3 Consider the mechanism design problem of Section 2 with a binary signal struc-
ture, i.e., ∀i xi ∈ X = {B,G}. Then, the allocations of the optimal mechanism satisfy
vih, v

i
l , ω

i ≥ 0. The mechanism allocates the claims efficiently if and only if ∆ ≥ 0, where:

∆ ≡

{
P(h|xi = B ∀i)− P(h|xi = G, xj = B ∀j 6= i)P(xi = G|xj = B ∀j 6= i) if v(h) > v(l)

P(l|xi = G ∀i)− P(l|xi = B, xj = G ∀j 6= i)P(xi = B|xj = G ∀j 6= i) if v(h) < v(l).

(45)
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and the expected revenues of the mechanism are given by (18), where:

ζ+ =

{
P (xi = G, xj = B ∀j 6= i) [P (h|xi = G, xj = B ∀j 6= i)− P (h|xi = B ∀i)] if ∆ ≥ 0

P (xi = B ∀i)P (h|xi = B ∀i) if ∆ < 0
,

(46)

ζ− =

{
P (xi = B, xj = G ∀j 6= i) [P (l|xi = B, xj = G ∀j 6= i)− P (l|xi = G ∀i)] if ∆ ≥ 0

P (xi = G ∀i)P (l|xi = G ∀i) if ∆ < 0
.

(47)

Proof. Suppose that v(h) > v(l); the proof for v(h) < v(l) is analogous. We solve the relaxed
problem in which the (IC) constraint for the trader who has received signal B and the (PC)
constraint of the trader who has received signal G are slack, and then we verify that this is
the case at the optimum.

In the relaxed problem, the (PC) constraint of trader with signal B must be binding, i.e.,

ωi(B, x−i) =
∑
s

vis(B, x
−i)P(s|B,Ai(B, x−i)) (48)

for all i, x−i, since by assumption this trader prefers to report his signal truthfully and the
mechanism will therefore extract his full surplus. It is also clear that the (IC) constraint of
trader with signal G must be binding, i.e.,

E{ωi(G, x−i)|G} = E

{∑
s

vis(G, x
−i)P(s|G,Ai(G, x−i))−max{0, U i(G,Ai(B, x−i))}|G

}
(49)

for all i, since if this trader were to strictly prefer to report his signal truthfully, then the
mechanism could increase its revenues by asking this trader to make larger payments for some
realizations of other traders’ signals. From (48), the payoff to trader with signal G from
reporting that he has signal B is:

U i(G,Ai(B, x−i)) =
(
vih(B, x

−i)− vil(B, x−i)
) (

P(h|G,Ai(B, x−i))− P(h|B,Ai(B, x−i))
)
,

(50)
where P(h|G,Ai(B, x−i)) > P(h|B,Ai(B, x−i)) for all i, x−i. The following inequality is
straightforward to establish:

E
{

max
{

0, U i
(
G,Ai

(
B, x−i

))}
|G
}
≥

E
{

max
{

0,
(
vih
(
B, x−i

)
− vil

(
B, x−i

))} (
P
(
h|G, x−i

)
− P

(
h|B, x−i

))
|G
}

(51)

for all i. Intuitively, it states that the rents of the trader with G signal are minimized if the
allocations of the trader who reports to have received signal B are fully revealing of other
traders’ signals x−i. Let us conjecture and then verify that at the optimum (51) holds with
equality for all i. The relaxed problem then reduces to finding the allocations of claims {vis}
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to solve the following:

max
{vis}

E

{∑
i

vis(x
i, x−i)

}
−∑

i

P(xi = G)E
{

max
{

0,
(
vih
(
B, x−i

)
− vil

(
B, x−i

))} (
P
(
h|G, x−i

)
− P

(
h|B, x−i

))
|G
}

(52)

subject to the feasibility constraint
∑

i v
i
s(x

i, xi) ≤ v(s) for all s, xi, x−i.
Thus, we see that the value of the mechanism increases in the claims it allocates to traders,

but it decreases in the rents it leaves to traders with G signals. By inspection, we see that
since selling claims to traders who reported signal G does not generate rents, it is optimal
to set: vis(G, x

−i) = m(x1, ..., xn)−1v(s), where m(x1, ..., xn) is the number of traders in the
mechanism who have reported signal G, when there is at least one such trader. This implies
that traders with B signals receive the empty allocation when there is at least one trader in
the mechanism with signal G.

We next determine the allocations, vis(x
i, x−i), whenever all traders in the mechanism report

signal B. For this case, since selling equal units of claims in both states does not entail
rents, it is optimal to set vih(x

i, x−i)|xi=B, xj=B ∀j 6=i ≥ vil(x
i, x−i)|xi=B, xj=B ∀j 6=i = n−1v(l).

Maximization of (52) with respect to vih(x
i, x−i)|xi=B, xj=B ∀j 6=i ∈ [n−1v(l), n−1v(h)] yields:

vih(x
i, x−i)|xi=B, xj=B ∀j 6=i =

{
n−1v(h) if ∆ ≥ 0

n−1v(l) if ∆ < 0.
(53)

Thus, the mechanism allocates these claims to the traders iff the expected payoff from doing
so exceeds the rents this allocation generates for traders with G signals. Note that, given the
computed allocations, when a trader’s allocation is non-empty, he perfectly infers the other
traders’ signals from it. In particular,

U i
(
G,Ai

(
B, x−i

))
=

{
n−1 (v (h)− v (l))

(
P
(
h|G, xj = B∀j 6= i

)
− P

(
h|B, xj = B∀j 6= i

))
if ∆ ≥ 0

0 if ∆ < 0

(54)

and our conjecture that (51) holds with equality is verified.
We have thus characterized the allocations of claims {vis}, which by (48) also pin down the

payments collected from the traders with B signals. Let us now characterize the payments
collected from the traders with G signals. To this end, suppose that the mechanism sets:

ωi
(
G, x−i

)
=
∑
s

vis
(
G, x−i

)
P
(
s|G, x−i

)
− U i

(
G,Ai

(
B, x−i

))
(55)

for all i, x−i. By construction, these payments satisfy the (IC) constraint of the trader with
G signal (see equation (49)), and clearly they also satisfy the (PC) constraints of this trader.

To complete the characterization, we are left to verify that the (IC) constraint of the trader
with signal B is satisfied. To this end, note that: (i) U i(B,Ai(G, x−i)) =

∑
s v(s)P(s|B, x−i)−

ωi(G, x−i) ≤ 0 when ∆ ≥ 0 and all other traders have received signal B (with strict inequality
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if n > 1); (ii) U i(B,Ai(G, x−i)) =
∑

s v(s)P(s|B, x−i) − ωi(G, x−i) < 0 when ∆ < 0 and
all other traders have received signal B, since then we have ωi(G, x−i) =

∑
s v(s)P(s|G, x−i);

(iii) U i(B,Ai(G, x−i)) = m(x1, ..., xn)−1
∑

s v(s)P(s|B, x−i)−ωi(G, x−i) < 0 when some other
traders have received signal G, since then ωi(G, x−i) = m(x1, ..., xn)−1

∑
s v(s)P(s|G, x−i).

Thus, this trader’s the ex-post payoff from reporting a G signal is always weakly negative,
which establishes the result.

Finally, if ∆ < 0, then the mechanism’s revenues are given by:

V ({v(s)}, µ∗) =
∑
s

π(s)v(s)− P(xi = B ∀i)P(h|xi = B ∀i)︸ ︷︷ ︸
ζ+≡

(v(h)− v(l)), (56)

since the mechanism does not allocate the risky portion of the claim to traders with B-signals,
but it allocates all the claims and extracts full surplus from traders with G signals (if there
are any). But, if ∆ ≥ 0, then:

V ({v(s)}, µ∗) =
∑
s

π(s)v(s)−

P
(
xi = G, xj = B ∀j 6= i

) [
P
(
h|xi = G, xj = B ∀j 6= i

)
− P

(
h|xi = B ∀i

)]︸ ︷︷ ︸
ζ+≡

(v(h)− v(l)),

(57)

since the mechanism must give information rents to each trader with G signal to discourage
him from reporting to have received a B signal.

Thus, Lemma A.3 shows that the claims allocations and the payments for all traders are
non-negative in the optimal mechanism. Though we conjecture that this result holds for
general investor signal structure, we do not have a proof of that. In Appendix B, we will
use these properties of the optimal mechanism to verify the assertions made in Section 2.1
that, at the proposed claims prices (see property (1)), the investors’ consumptions remain
non-negative at all times.

The lemma also provides the conditions under which the optimal trading arrangements
allocate the claims inefficiently in secondary markets. In particular, the optimal mechanism
trades with probability less than one whenever the loss generated from excluding the pes-
simistic traders from trade is smaller than the resulting reduction in the rents earned by the
more optimistic traders. For instance, when n = 1 and v(h) > v(l), this occurs if and only if
P(h|xi = B) < P(xi = G)P(h|xi = G), i.e., when signals are very informative about the state
and/or there is a high probability of a trader having received a Good signal.

For the binary-symmetric parameterization of the signals, the expression for ζ+ that is
depicted in Figure 2 becomes:

ζ+ = min

{
(1− φ)n, φ (1− φ)n−1 − φ (1− φ)n−1 π (h) + (1− φ)φn−1 (1− π (h))

(1− φ)n π (h) + φn (1− π (h))
(1− φ)n

}
·π(h),

(58)
where the condition ∆ ≥ 0 is equivalent to the first term in the min operator being greater
than the second term. Consistent with the properties (i)-(iii) of the proposition, we see that
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ζ+ goes to zero as n grows large, as φ goes to 1
2

or 1, and as π(h) goes to 0 or 1.

Proof of Corollary 1. In equilibrium, the claims issued by the entrepreneurs must be held
by the investors. Thus, for all s, d1(s) = B1(s) and d2(s) = 0, which implies that v(s) = B1(s).
The investor’s net expected payoff from purchasing claims {v(s)} at the issuance stage is:

Γ({v(s)}) = −
∑
s

q(s)v(s) + λV ({v(s)}, µ∗) + (1− λ)
∑
s

π(s)v(s). (59)

From Proposition 1: (i) when q(h) = π(h) − λζ+, then Γ({v(s)}) = 0 if v(h) ≥ v(l) and
Γ({v(s)}) < 0 otherwise; (ii) when q(h) = π(h) + λζ−, then Γ({v(s)}) = 0 if v(h) ≤ v(l)
and Γ({v(s)}) < 0 otherwise; (iii) when q(h) ∈ (π(h)− λζ+, π(h) + λζ−), then Γ({v(s)}) = 0
if v(h) = v(l) and Γ({v(s)}) < 0 otherwise. It thus follows that the claims prices given in
Corollary 1 are part of equilibrium.

Next, note that these are the only prices consistent with equilibrium. From Proposition
1: (i) if v(h) > v(l), then Γ({v(s)}) is decreasing in q(h) and equal to zero when q(h) =
π(h) − λζ+. Therefore, if q(h) were higher, the investors would not want to hold the claims
{v(s)}, but if q(h) were lower, there would be excess demand. By an analogous argument, if
v(h) < v(l), then it must be that q(h) = π(h)+λζ−. Finally, if v(h) = v(l), then Γ({v(s)}) = 0
for any q(h). However, if q(h) 6∈ [π(h) − λζ+, π(h) + λζ−], then the investor would deviate
and form a contingent portfolio: if q(h) < π(h)− λζ+, then Γ({v(s)}) > 0 for v(h) > v(l); if
q(h) > π(h) + λζ−, then Γ({v(s)}) > 0 for v(h) < v(l).

Proof of Corollary 2. See text.

The next two lemmas will be used in the proofs of Propositions 2 and 3.

Lemma A.4 In equilibrium, B1(h) ≥ B1(l) and q(h) < π(h).

Proof. Suppose to the contrary that B1(h) < B1(l). Then, we must have p(h) ≥ p(l) and

q(h) = π(h) + λζ− (Corollaries 1 and 2). But, Lemma 3 implies that π(h)
q(h)

A
p(h)
≥ 1−π(h)

1−q(h)
A
p(l)

or,
equivalently, that:

p(h) ≤ π(h)

q(h)
· 1− q(h)

1− π(h)
· p(l) < p(l), (60)

a contradiction.
Suppose to the contrary that q(h) ≥ π(h). By the argument above and Corollary 1, it must

be that B1(h) = B1(l) ≤ (a(l)+gA)K0. By Assumption 2(iii), it must be that B1(h) < a(h)K0

and, thus, p(h) = A (Corollary 2). Since also B1(h) < (a(h) + p(h))K0, we must have
π(h)
q(h)

A
p(h)
≥ 1−π(h)

1−q(h)
A
p(l)

(Lemma 3). But, because q(h) ≥ π(h) and p(h) = A, this is only possible

if q(h) = π(h) and p(l) = A, which in turn implies that B1(l) ≤ a(l)K0 (Corollary 2). By
Lemma 4, the entrepreneurs’ investment scale satisfies, χ′(K0) =

∑
s π(s)a(s) + A, which

implies that χ(K0) > a(l)K0 ≥
∑

s q(s)B1(s) by Assumption 2(ii), a contradiction.

Lemma A.5 In equilibrium, p(h) > p(l) and, thus, B1(l) ≥ a(l)K0 and B1(h) ≤ a(h)K0.
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Proof. Suppose to the contrary that p(l) ≥ p(h). By Lemma A.4, q(h) < π(h) and, thus, it

must be π(h)
q(h)

A
p(h)

> 1−π(h)
1−q(h)

A
p(l)

. But then we must have B1(h) ≥ B1(l) = (a(l)+gA)K0 (Lemmas

3 and A.4) and, thus, p(l) = gA (Corollary 2). Since p(h) ≥ gA, we must thus also have p(h) =
gA. By Lemma 4, the entrepreneurs’ investment satisfies χ′(K0) =

∑
s q(s)a(s) + gA. Since

q(h) < π(h), we have χ(K0) <
∑

s π(s)a(s)K0 < (a(l)+gA)K0 by Assumptions 2(i)&(iii). But
we also have χ(K0) =

∑
s q(s)B1(s) ≥ (a(l) + gA)K0, a contradiction. Finally, by Corollary

2, if B1(l) < a(l)K0, then p(l) = A; and if B1(h) > a(h)K0, then p(h) = gA. These contradict
the previous result that p(h) > p(l).

Proof of Proposition 2. Assume that q̄ > π(h)− λζ+.
We first show that B1(h) = B1(l). Suppose to the contrary that B1(h) > B1(l) (recall

B1(h) ≥ B1(l) by Lemma A.4), then q(h) = π(h) − λζ+ (Corollary 1). Since B1(h) <
(a(h) + p(h))K0 (Lemma A.5), the entrepreneurs’ optimal financing decision implies that
π(h)
q(h)

A
p(h)
≥ 1−π(h)

1−q(h)
A
p(l)

or, equivalently,

p(l) ≥ π(h)− λζ+

π(h)

1− π(h)

1− π(h) + λζ+
p(h), (61)

where the inequality is an equality whenever the borrowing constraint is slack in state l, i.e.,
if B1(l) < (a(l) + gA)K0 (Lemma 3). If B1(l) < (a(l) + gA)K0, then (61) holds with equality
and, using the definition of q̄ in (22) and the assumption that q̄ > π(h)− λζ+, we have that
p(l) < gp(h) ≤ gA, a contradiction. Instead, if B1(l) = (a(l) + gA)K0, then entrepreneurs
liquidate capital in state l and, thus, p(l) = gA (Corollary 2). By Lemma 4, the entrepreneurs’
investment scale satisfies:

χ′(K0) = q(h)(a(h) + p(h)) + (1− q(h))(a(l) + gA). (62)

Since also χ(K0) =
∑

s q(s)B1(s) > (a(l) + gA)K0, it follows that K0 is greater than k̄ > 0
such that χ(k̄) = (a(l) + gA)k̄. Thus,

χ′(k̄) < q(h)(a(h) + p(h)) + (1− q(h))(a(l) + gA)

< q̄(a(h) + A) + (1− q̄)(a(l) + gA)

≤ χ′(k̄), (63)

where the last inequality follows from the definition of q̄ in (22), a contradiction.
Next, we show that B1(l) > a(l)K0 and capital gets liquidated in state l. Suppose to

the contrary that B1(l) ≤ a(l)K0. Because the claims are non-contingent, B1(h) = B1(l) ≤
a(l)K0, it must be that p(h) = A and p(l) = q(h)

π(h)
1−π(h)
1−q(h)

A (Corollary 2 and Lemma 3), and also

that the investment scale satisfies χ(K0) = B1(l) ≤ a(l)K0 (Lemma 2). But, by Assumption
2(ii),

χ′(K0) <
π(h)g

π(h)g + 1− π(h)
(a(h) + A) +

(
1− π(h)g

π(h)g + 1− π(h)

)
(a(l) + gA)

≤ q(h)(a(h) + A) + (1− q(h))(a(l) + p(l)) (64)
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where the second inequality follows from the fact that p(l) = q(h)
π(h)

1−π(h)
1−q(h)

A and that p(l) ≥ gA.

But then the investment scale K0 is sub-optimal (Lemma 4), a contradiction.
Next, we show that q(h) = q̄. Since B1(l) > a(l)K0, we have p(l) = gA. Since the

claims are non-contingent, B1(h) = B1(l), and since a(l) + gA < a(h) by Assumption 2(iii),
it must be that B1(h) < a(h)K0 and, thus, p(h) = A. By Lemma 3, the entrepreneurs’

optimal financing decision implies that π(h)
q(h)

A
p(h)
≥ 1−π(h)

1−q(h)
A
p(l)

, where if B1(l) < (a(l) + gA)K0,

then π(h)
q(h)

A
p(h)

= 1−π(h)
1−q(h)

A
p(l)

. Using the fact that p(l) = gA and p(h) = A, we have that

q(h) = π(h)g
π(h)g+1−π(h)

. Since χ(K0) =
∑

s q(s)B1(s) < (a(l) + gA)K0, it must be that K0 < k̄.
By Lemma 4, this is an equilibrium if and only if:

χ′(k̄) >
π(h)g

π(h)g + 1− π(h)
(a(h) + A) +

(
1− π(h)g

π(h)g + 1− π(h)

)
(a(l) + gA), (65)

which holds if and only if also q̄ = π(h)g
π(h)g+1−π(h)

(see definition of q̄); thus, q(h) = q̄. On the

other hand, if B1(l) = (a(l) + gA)K0, then π(h)
q(h)

A
p(h)
≥ 1−π(h)

1−q(h)
A
p(l)

. Using the fact that p(l) = gA

and p(h) = A, we have q(h) ≤ π(h)g
π(h)g+1−π(h)

. We also have that K0 = k̄ and, therefore, by
Lemma 4 it must be that:

χ′(k̄) = q(h)(a(h) + A) + (1− q(h)) (a(l) + gA), (66)

which holds if and only if q(h) = q̄ (see definition of q̄).
Finally, p(l) = gA since capital gets liquidated in state l, and p(h) = A since B1(h) =

B1(l) ≤ (a(l) + gA)K0 and since a(l) + gA < a(h) (Assumption 2(iii)); thus, B1(h) < a(h)K0.
As for equilibrium existence, we have shown that shown that, in equilibrium, asset prices

satisfy q(h) = q̄, p(h) = A and p(l) = gA; entrepreneurs fund investment with non-contingent
claims χ(K0) = B1(h) = B1(l), liquidate capital only in state l according to equation (1), and
they invest ex-ante at scale:

χ′(K0) = q̄(a(h) + A) + (1− q̄)(a(l) + gA). (67)

Hence, an equilibrium exists by continuity of χ(·) and χ′(·), and convexity of the former.

Proof of Proposition 3. Assume that q̄ < π(h)− λζ+.
We first show that B1(h) > B1(l) (recall B1(h) ≥ B1(l) by Lemma A.4). Suppose to the

contrary that B1(h) = B1(l). If B1(l) < (a(l) + gA)K0, then by Assumption 2(iii) we also
have B1(h) < a(h)K0 and, thus, p(h) = A. Following the same arguments as in the proof of
Proposition 2, we can show that then B1(l) > a(l)K0, capital gets liquidated in state l and,

thus, p(l) = gA. The entrepreneurs’ optimal financing decision implies π(h)
q(h)

A
p(h)

= 1−π(h)
1−q(h)

A
p(l)

,

which in turn implies that q(h) = π(h)g
π(h)g+1−π(h)

. Since K0 < k̄ defined by χ(k̄) = (a(l) + gA)k̄,

using Lemma 4 and the definition of q̄ we have that q̄ = π(h)g
π(h)g+1−π(h)

and, thus, q(h) <

π(h) − λζ+, which contradicts Corollary 1. Instead, if B1(l) = (a(l) + gA)K0, then again

p(l) = gA < A = p(h) but K0 = k̄. By Lemma 3, π(h)
q(h)

A
p(h)
≥ 1−π(h)

1−q(h)
A
p(l)

and, thus, q(h) ≤
π(h)g

π(h)g+1−π(h)
. By Lemma 4, we must have q(h) = χ′(k̄)−(a(l)+gA)

(a(h)+A)−(a(l)+gA)
= q̄ < π(h) − λζ+, again
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contradicting Corollary 1.
Since B1(h) > B1(l), we have q(h) = π(h)− λζ+.

Since B1(h) ≤ a(h)K0 (Lemma A.5), it must be that π(h)
q(h)

A
p(h)
≥ 1−π(h)

1−q(h)
A
p(l)

or, equivalently,

that γp(h) ≤ p(l), where the inequality is an equality if the borrowing constraint in the low
state is slack. That p(l) < p(h) is also shown in Lemma A.5.

Finally, we find the necessary and sufficient conditions for capital to be liquidated in the
low state. Note that, by Lemma A.5, B1(h) ≤ a(h)K0 and, thus, capital is not liquidated in
state h. If capital is to be liquidated in the low state, then it must be that B1(l) > a(l)K0

and p(l) = gA. By Lemmas 3 and A.5, and the assumption that q̄ < π(h) − λζ+, it must
be that B1(h) = a(h)K0 and p(h) < A; otherwise, the entrepreneurs would strictly prefer to
borrow against the high state. By Lemma 4, the optimal investment scale satisfies:

χ′(K0) = q(h)(a(h) + p(h)) + (1− q(h)) (a(l) + gA), (68)

where p(h) ≤ γ−1p(l) = γ−1gA, with equality if B1(l) < (a(l) + gA)K0. Thus, capital gets
liquidated in the low state if and only if at the capital price p(h) = γ−1gA, the investment
scale satisfies χ(K0) >

∑
s q(s)a(s)K0, i.e., at the lowest possible equilibrium prices of capital,

the entrepreneurs still want to borrow more than their intermediate cashflows.
As for equilibrium existence, we have shown that a(l)K0 ≤ B1(l) < B1(h) ≤ a(h)K0 (thus,

there are no liquidations in in state h), q(h) = π(h) − λζ+, and p(l) ≥ γp(h) with equality
when B1(l) < (a(l) + gA)K0. It follows that the equilibrium falls into one of four cases:

Case 1. If χ (k) ≤
∑

s q (s) a (s) k for k > 0 s.t. χ′ (k) = q (h) (a (h) + A)+(1− q (h)) (a (l) + γA),
then:

χ′ (K0) = q (h) (a (h) + A) + (1− q (h)) (a (l) + γA) ; (69)

p (h) = A; p (l) = γA. (70)

Case 2. If χ (k) >
∑

s q (s) a (s) k for k > 0 s.t. χ′ (k) = q (h) (a (h) + A)+(1− q (h)) (a (l) + γA),
but χ (k) ≤

∑
s q (s) a (s) k for k > 0 s.t. χ′ (k) = q (h) (a (h) + γ−1gA)+(1− q (h)) (a (l) + gA),

then:
χ (K0) =

∑
s

q (s) a (s)K0; (71)

p (h) = (q (h) + (1− q (h)) γ)−1 ·

(
χ′ (K0)−

∑
s

q (s) a (s)

)
; p (l) = γp (h) . (72)

Case 3. If χ (k) >
∑

s q (s) a (s) k for k > 0 s.t. χ′ (k) = q (h) (a (h) + γ−1gA)+(1− q (h)) (a (l) + gA),
but χ (k) ≤ (q (h) a (h) + (1− q (h)) (a (l) + gA)) k for k > 0 s.t. χ′ (k) = q (h) (a (h) + γ−1gA)+
(1− q (h)) (a (l) + gA), then:

χ′ (K0) = q (h)
(
a (h) + γ−1gA

)
+ (1− q (h)) (a (l) + gA) ; (73)

p (h) = γ−1gA; p (l) = gA. (74)

Case 4. Finally, if χ (k) > (q (h) a (h) + (1− q (h)) (a (l) + gA)) k for k > 0 s.t. χ′ (k) =
q (h) (a (h) + γ−1gA) + (1− q (h)) (a (l) + gA), then:

χ (K0) = (q (h) a (h) + (1− q (h)) (a (l) + gA))K0, (75)
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p (h) = q (h)−1 ·

(
χ′ (K0)−

∑
s

q (s) a (s)− (1− q (h)) gA

)
; p (l) = gA. (76)

Hence, an equilibrium exists by continuity of χ(·) and χ′ (·), and convexity of the former.

Proof of Corollary 3. From Propositions 2 and 3, the equilibrium features “no risk-sharing”
if and only if λζ+ > π(h)− q̄. We next make two observations.

First, from Proposition 1, the distortion term ζ+ depends only on the primitives (n, φ, π(h));
moreover, all else equal, ζ+ is decreasing in n, and it is non-monotonic in φ (i.e., increasing
at first and then eventually decreasing; see equation (58) in the proof of Proposition 1 and
Figure 2 for an illustration).

Second, from the definition of q̄ in equation (22), we have that:

q̄ = min

{
π(h)g

π(h)g + 1− π(h)
,

(ω − 1) (a (l) + gA)

(a (h) + A)− (a (l) + gA)

}
, (77)

which depends only on the primitives (a(l), a(h), A, ω, g, π(h)); moreover, q̄ is increasing in g,

ω and a(l)+gA
a(h)+A

.
Combining these two observations, we conclude that the equilibrium is more likely to be in

the “no risk-sharing” region if, all else equal, (i) λ is large, n is small, and φ is intermediate;

and (ii) g, ω and a(l)+gA
a(h)+A

are large.

Finally, the effect of π(h) is more subtle, as it affects both the severity of information-trading
frictions (see Proposition 1 and Figure 2) and the entrepreneurs’ desire to insure net worth
fluctuations. Indeed, one can construct numerical examples in which larger values of π(h) put
the equilibrium either into the “no risk-sharing” or the “partial risk-sharing” region.

Proof of Proposition 4. First, that the entrepreneurs’ lifetime welfare decreases with the
severity of information-trading frictions is straightforward, as they simply face a higher cost
to insuring net worth fluctuations. Second, in equilibrium, the investors hold the claims issued
by the entrepreneurs, i.e., v(s) = B1(s) for all s. Since B1(h) ≥ B1(l) (see Propositions 2 and
3), using Proposition 1 and Corollary 1, the investors’ lifetime welfare is:

U I = e−
∑
s

q(s)B1(s) + λ

(∑
s

π(s)B1(s)− ζ+ (B1(h)−B1(l))

)
+ (1− λ)

(
W̃ +

∑
s

π(s)B1(s)

)
= e+ (1− λ)W ({Bt(s)}, µ∗)
= e+ λnW ({Bt(s)}, µ∗)
≤ e+ λζ+ (B1(h)−B1(l)) , (78)

with equality if and only if the trading arrangements allocate the claims efficiently. The
second equality follows from the fact that B1(h) > B1(l) implies that q(h) = π(h) − λζ+

(Corollary 1), and that W̃ = W ({Bt(s)}, µ∗). The third equality follows from nλ = 1 − λ.
The last inequality follows from the fact that the traders’ rents are bounded by the losses of
the mechanism (Proposition 1). Also, since W ({Bt(s)}, µ∗) ≥ 0, it must be that U I ≥ e.
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Proof of Lemma 5. From equation (31) and equations (35)-(36), we have:

λV
(
{Tt (s)} , µSP

)
+ (1− λ)W

(
{Tt (s)} , µSP

)
=

= λE

{∑
i

ωSP
(
xi, x−i

)}
+ (1− λ)E

{
U
(
xi,ASP (xi, x−i)

)}
= λE

{
n∑
i=1

ωSP
(
xi, x−i

)}
+ (1− λ)E

{∑
s

vSPs
(
xi, x−i

)
· P
(
s|xi,ASP

(
xi, x−i

))
− ωSP

(
xi, x−i

)}

= (1− λ)E

{∑
s

vSPs
(
xi, x−i

)
· P
(
s|xi,ASP

(
xi, x−i

))}
, (79)

where the last equality follows by symmetry: λE
{∑n

i=1 ω
SP (xi, x−i)

}
= λnE

{
ωSP (xi, x−i)

}
=

(1− λ)E
{
ωSP (xi, x−i)

}
. Next, by Bayes’ rule:

E

{∑
s

vSPs
(
xi, x−i

)
· P
(
s|xi,ASP

(
xi, x−i

))}
=
∑
s

∑
xi,ASP (xi,x−i)

vSPs
(
xi, x−i

)
· P
(
xi,ASP

(
xi, x−i

)
|s
)
· π (s)

=
∑
s

π (s)E
{
vSPs

(
xi, x−i

)
|s
}
. (80)

Finally, by symmetry (1− λ)
∑

s π (s)E
{
vSPs (xi, x−i) |s

}
= λn

∑
s π (s)E

{
vSPs (xi, x−i) |s

}
=

λ
∑

s π (s)E
{∑

i v
SP
s (xi, x−i) |s

}
, which establishes the result.

Proof of Corollary 4. Follows from Lemma 5 and the constraint (34) in the planner’s
mechanism design problem.

Proof of Lemma 6. That the right-hand side of equation (39) is the upper bound on the
investors’ welfare follows by Corollary 4. Consider the trading arrangement µSP proposed in
the text, which consists of allocations: ASP (xi, x−i) =

(
ωSP (xi, x−i) ,

{
vSPs (xi, x−i)

})
for all

xi, x−i. Note that these allocations reveal to traders each others’ reports. To show that µSP is
feasible, we need to show that the constraints (32), (33) and (34) in the planner’s mechanism
design problem are satisfied. To this end, observe that:

U
(
xi,ASP

(
xi, x−i

))
=
∑
s

vSPs
(
xi, x−i

)
· P
(
s|xi, x−i

)
− ωSP

(
xi, x−i

)
(81)

= n−1 ·

(∑
s

P
(
s|xi, x−i

)
· (T1 (s) + T2 (s))−min

x

∑
s

P
(
s|xi = x, x−i

)
· (T1 (s) + T2 (s))

)
≥ 0, (82)

and, thus, the (PC) constraint (32) holds. The (IC) constraint (33) holds trivially since a
trader’s allocation does not depend on his own report. Finally, the (FC) constraint (34) holds
trivially since the mechanism allocates all the claims that it has available to the traders.

Proof of Lemma 7. Let U denote the investors’ lifetime welfare in the laissez-faire equilib-
rium. By inspection of problem (P3), it is weakly optimal for the planner to set T0 = e−χ(kSP0 )
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and T2(s) = gA(k0−k1(s)) ∀s, as this minimizes the transfers {T1(s)} and, thus, the inefficient
capital liquidations. Using Lemma 6, the planner’s problem therefore reduces to:

max
k0,{k1(s),T1(s)}

∑
s

π(s) [(a(s)k0 − T1(s) + Ak1(s)]

subject to

0 ≤ T1(s) ≤ a(s)k0, (83)

0 ≤ k1(s) ≤ k0, (84)

U ≤ e− χ(k0) +
∑
s

π(s) (T1(s) + gA(k0 − k1(s))) . (85)

It is without loss of generality to assume that (i) k1(s) = k1 for all s, and (ii) T1(h) ≥ T1(l)
with equality if T1(l) < a(l)k0. Furthermore, it must be that k1 = k0 if T1(h) < a(h)k0,
since it is cheaper for the planner to finance investment with intermediate cashflows than by
liquidating capital inefficiently. Finally, constraint (85) must hold with equality, as otherwise
the planner can reduce transfers to the investors and increase the entrepreneurs’ welfare.

We now show that it is optimal to set T1(l) = a(l)k0. Suppose to the contrary that T1(s) =
T1 < a(l)k0. Then, since k1 = k0, from constraint (85) the planner’s investment scale is
χ(k0) = e − U + T1 < a(l)k0, as U ≥ e by Proposition 4. Consider next a small increase in
the transfer of dT1 and the investment scale of dk0 = dT1

χ′(k0)
, so that constraint (85) is still

satisfied. Then, the change in the entrepreneurs’ welfare is:∑
s

π(s)(a(s) + A)dk0 − dT1 =

(∑
s π(s)(a(s) + A)

χ′(k0)
− 1

)
dT1, (86)

which is positive by Assumption 2(ii) as χ(k0) < a(l)k0, a contradiction.
We now use the above results to show that k0 and k1 are given by equations (41) and (42).
Suppose that pSPU = A, as defined in equation (40). It is sufficient to show that the

first-best investment scale is indeed feasible without inefficient liquidations. But this follows
immediately since kFB0 ≤ k̃U and, thus, the first-best scale can be implemented with some
transfer a(l)kFB0 < T1(h) ≤ a(h)kFB0 .

Suppose that gA < pSPU < A. It is straightforward that T1(h) = a(h)k0, as otherwise the
planner can always increase the entrepreneurs’ welfare by increasing the investment scale and
the transfer in the high state at the same time. Assume to the contrary that k1 < k0, and
consider a small increase in the continuation scale of dk1 and a reduction in the investment
scale of dk0 = gA∑

π(s)a(s)+gA−χ′(k0)
dk1 < 0, so that constraint (85) is still satisfied. Observe that

this is feasible: because T1(s) = a(s)k0 and k1 < k0, it follows that k0 > k̃U , which together

with pSPU > gA implies that χ′(k0) > χ′(k̃U) >
∑
π(s)(a(s) + gA). The entrepreneurs’ welfare

clearly increases, since it is equal to Ak1 and k1 has increased, a contradiction. Since we have
established that T1(h) = a(h)k0 and k1 = k0, constraint (85) implies that k0 = k̃U .

Suppose that pSPU = gA. It is again straightforward to show that T1(h) = a(h)k0 by the
same reasoning as above. Assume to the contrary that k1 = k0. From constraint (85), it

follows that k0 = k̃U , which together with pSPU = gA implies χ′(k0) <
∑

s π(s)(a(s) + gA).
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Consider a small increase in the investment scale of dk0 and an increase in the continuation
scale of dk1 =

∑
s π(s)a(s)+gA−χ′(k0)

gA
dk0 > 0, so that constraint (85) is still satisfied. Since the

entrepreneurs’ welfare is Ak1, it increases, a contradiction. Therefore, we have established that
T1(h) = a(h)k0 and k1 < k0. Maximization of the entrepreneurs’ welfare w.r.t. k0 subject to
constraint (85) implies χ′(k0) =

∑
s π(s)a(s) + gA. Given k0, the expression for k1 follows

directly from constraint (85).

Proof of Proposition 5. First, clearly the equilibrium is constrained inefficient if the trad-
ing arrangements in it allocate the claims inefficiently among investors (see explicit conditions
in Lemma A.3). Second, if the equilibrium features no risk-sharing, then U I = e by Proposi-
tion 4. By inspection of the planner’s problem, setting U = e, we see that her investment and
continuation scales coincide with those of the benchmark economy, which are clearly different
from equilibrium. Thus, the equilibrium is again constrained inefficient. Finally, suppose that
in equilibrium both the claims are allocated efficiently and there is partial risk-sharing. In
this case, we know that in equilibrium B1(l) ≥ a(l)K0 and B1(h) ∈ (a(l)K0, a(h)K0] (see
Proposition 3 and Lemmas A.4 and A.5). There are thus three cases to consider.

Case 1. Suppose that in equilibrium B1(l) = a(l)K0 < B1(h) < a(h)K0, and thus there
are no capital liquidations. Since the allocation of claims is efficient, from Proposition 4, it
follows that U = e+ λζ+(B1(h)−B1(l)) and, since q(h) = π(h)− λζ+, we have:

χ(K0) =
∑
s

q(s)B1(s)K0 =
∑
s

π(s)B1(s) + e− U. (87)

Therefore, K0 < k̃U . The only scenario in which the planner chooses scale below k̃U is when
kSP0 = kFB (see Lemma 7). But the scale in the laissez-faire equilibrium is below the first-best
scale kFB. Thus, in this case, the equilibrium is constrained inefficient.

Case 2. Suppose that in equilibrium B1(s) = a(s)K0 ∀s, and thus there are no capital
liquidations. By reasoning analogous to Case 1, it must be that:

χ(K0) =
∑
s

q(s)B1(s)K0 =
∑
s

π(s)a(s)K0 + e− U, (88)

which implies that K0 = k̃U . For this to be consistent with equilibrium, it must be that
p(l) = γp(h), p(h) ∈ [γ−1gA,A], and using the expression for γ:

χ′(k̃U) =
∑
s

q(s)(a(s) + p(s))

=
∑
s

π(s)a(s)− λζ+(a(h)− a(l)) +
π(h)− λζ+

π(h)
p(h). (89)

Plugging the bounds for p(h), we conclude that this is an equilibrium if and only if:

1− π(h) + λζ+

1− π(h)
gA−λζ+(a(h)−a(l)) ≤ χ′(k̃U)−

∑
s

π(s)a(s) ≤ π(h)− λζ+

π(h)
A−λζ+(a(h)−a(l)).

(90)
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On the other hand, from Lemma 7, the planner sets the investment scale to k̃U and does not
liquidate capital if and only if:

gA ≤ χ′(k̃U)−
∑
s

π(s)a(s) ≤ A. (91)

By inspection of (90) and (91), we conclude that, in this case, the equilibrium may or may
not be constrained efficient.

Case 3. Suppose that in equilibrium B1(l) > a(l)K0 and B1(h) = a(h)K0, and thus capital
is liquidated in the low state. By reasoning analogous to Case 1, it must be that:

χ(K0) =
∑
s

q(s)B1(s)K0 >
∑
s

π(s)a(s)K0 + e− U, (92)

which implies that K0 > k̃U . For this to be consistent with equilibrium, it must be that
p(l) = gA, p(h) = γ−1gA, and

χ′(K0) =
∑
s

q(s) (a(s) + p(s))

=
∑
s

π(s)a(s)− λζ+(a(h)− a(l)) +
1− π(h) + λζ+

1− π(h)
gA

> χ′(k̃U). (93)

On the other hand, from Lemma 7, the planner would choose the same investment scale, i.e.,
kSP0 = K0 if and only if:

χ′(K0) =
∑
s

π(s)a(s) + gA. (94)

Combining equations (93) and (94) implies (1− π(h))(a(h)− a(l)) = gA. Thus, in this case,
the equilibrium is generically constrained inefficient.

Proof of Proposition 6. Let U denote the investors’ welfare in the laissez-faire equi-
librium without intervention. Consider the following intervention. The planner enters a
trading arrangement µ for claims {dt(s)}, she observes whether the seller is impatient (just
like the traders do), and intervenes if and only if that is the case, so as to discourage pa-
tient investors from selling claims. In particular, the planner gives the seller a subsidy
S ({dt (s)} , µ) = nW ({dt (s)}, µ). The planner will finance the intervention with a lump
sum tax Tf = S({Bt(s)}, µSP ) on all sellers of claims, where {Bt(s)} is the equilibrium aggre-
gate supply of claims after the intervention with B1(s) = T1(s) +T2(s) and B2(s) = 0 ∀s, and
where the planner’s allocations {Tt(s)} are given in the proof of Lemma 7. The planner also
makes a transfer Tu = U − e from entrepreneurs to investors ex-ante.

Given the above intervention, the sorting of investors into sellers and buyers will remain
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unchanged, and the representative investor’s problem will become:

U I = max
{dt(s)},µ

U −
∑
s

q (s) (d1 (s) + d2 (s)) (95)

+ λ
(
V ({dt (s)} , µ) + S ({dt (s)} , µ)− S

(
{Bt (s)} , µSP

))
(96)

+ (1− λ)

(
W̃ +

∑
s

π (s) (d1 (s) + d2 (s))

)
, (97)

subject to the budget constraint at the issuance stage, i.e., U ≥
∑

s π(s)(d1(s) + d2(s)), and
consumption non-negativity in periods 1 and 2, i.e., dt(s) ≥ 0 ∀t, s; and subject to the trading
arrangement µ being in the feasible set M.

We immediately see that the seller’s choice of trading arrangement only enters the term
V ({dt (s)} , µ) + S ({dt (s)} , µ). Since V ({dt (s)} , µ) ≤

∑
s π(s)(d1(s) + d2(s)) for all feasible

µ, it is optimal for the investor to set µ = µSP , in which case:

V
(
{dt (s)} , µSP

)
+ S

(
{dt (s)} , µSP

)
=
∑
s

π(s)(d1(s) + d2(s)). (98)

Thus, the investors’ expected value of the claims is
∑

s π(s)(d1(s) + d2(s)), independently of
whether they sell or keep them. But then, it is straightforward to show that in equilibrium
dt(s) = bt(s) = Bt(s) ∀t, s and q(s) = π(s) ∀s, and that the investment and continuation
scales coincide with those of the planner. That the investors’ lifetime welfare is U then follows
from the observation that λS({Bt(s)}, µSP ) = λnW ({Bt(s)}, µSP ) = (1− λ)W̃ .

Proof of Proposition 7. Let U denote the investors’ welfare in the laissez-faire equilibrium
without intervention. Consider the following intervention. The planner enters a trading
arrangement µ for claims {dt(s)}, she observes whether the seller is impatient (just like the
traders do), and intervenes if and only if that is the case, so as to discourage patient investors
from selling claims. Let us focus on the case where v (h) = d1(h) + d2(h) > d1(l) + d2(l) =
v (l); the proof for the case v (h) < v (l) is analogous; and, if v(h) = v(l), then there is no
need for intervention. Our candidate intervention consists of the planner offering to buy the
mechanism’s claims at some price ω̄({v(s)}) and then re-sell these claims to the traders at
some price ω({v(s)}).

First, observe that setting ω({v(s)}) = minx E{v(s)|∀i xi = x} ensures that, if the govern-
ment were to purchase claims from the mechanism, then it would allocate them to the traders
with probability 1, as this is the lowest possible valuation of the traders.

Second, observe that if the planner were to set ω̄({v(s)}) = ω({v(s)}), then the allocation
of claims and their pricing in the mechanism would remain unchanged. Instead, if the planner
were to set ω̄({v(s)}) = maxx E{v(s)|∀i xi = x}, then the mechanism would sell the claims to
the government with probability 1, but this would generate over-pricing of claims. We will next
show that there exists a price ω̄({v(s)}) ∈ (minx E{v(s)|∀i xi = x}, maxx E{v(s)|∀i xi = x}),
such that after the intervention the optimal mechanism sells its claims (either to the gov-
ernment or the traders) with probability 1, and the claims are priced fairly. To construct
the price ω̄({v(s)}), we will next utilize the prices received by the optimal mechanism in the
absence of any intervention, as characterized in Lemma A.3, where recall that there are two
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possible cases, depending on the sign of ∆ ≥ 0.

Case (a). When ∆ ≥ 0, the allocations of the optimal mechanism are given by:

ωi
(
B, x−i

)
=

{
0 if ∃j 6= i xj = G

n−1E
{
v (s) |xi = B, x−i

}
if ∀j 6= i xj = B

, vis
(
B, x−i

)
=

{
0 if ∃j 6= i xj = G

n−1v (s) if ∀j 6= i xj = B
;

and

ωi
(
G, x−i

)
=

{
m
(
x1, ..., xn

)−1 E
{
v (s) |xi = G, x−i

}
if ∃j 6= i xj = G

E
{
v (s) |xi = G, x−i

}
−Rn−1 (v (h)− v (l)) if ∀j 6= i xj = B

, vis
(
G, x−i

)
= m

(
x1, ..., xn

)−1
v (s) ;

where R is the rent earned by the optimistic trader, and it is given by:

R = P
(
h|xi = G,∀j 6= i xj = B

)
− P

(
h|xi = B, ∀j 6= i xj = B

)
. (99)

Case (b). When ∆ < 0, the allocations of the optimal mchanism are given by:

ωi
(
B, x−i

)
=

{
0 if ∃j 6= i xj = G

n−1v (l) if ∀j 6= i xj = B
, and vis

(
B, x−i

)
=

{
0 if ∃j 6= i xj = G

n−1v (l) if ∀j 6= i xj = B
;

and

ωi
(
G, x−i

)
= m

(
x1, ..., xn

)−1 E
{
v (s) |xi = G, x−i

}
, and vis

(
G, x−i

)
= m

(
x1, ..., xn

)−1
v (s) .

Next, define ω̄ ({v (s)}) as follows:

E
{
v (s) |∀j 6= i xj = B

}
=

P (∀i xi = B)

P (∃i ∀j 6= i xj = B)
ω̄ ({v (s)}) +

+

(
1− P (∀i xi = B)

P (∃i ∀j 6= i xj = B)

)
max

{
ω̄ ({v (s)}) , ωi

(
G, x−i

)
|∆≥0, ∀j 6=i xj=B

}
, (100)

where ωi (G, x−i) |∆≥0, ∀j 6=i xj=B is the payment of the trader who receives signal G, when
∆ ≥ 0 and all other traders received signal B. It is straightforward to verify that ω ({v (s)}) <
ω̄ ({v (s)}) < E {v (s) |xi = G, ∀j 6= i xj = B}.

Now, consider the following candidate mechanism, given the intervention:

(i) allocate all the claims to the traders with G signals at prices as in Case (a) if there are
at least two such traders;

(ii) allocate all the claims to the government if all traders received signal B; and

(iii) allocate all the claims to the government if only one trader received signal G and
ω̄ ({v (s)}) > ωi (G, x−i) |∆≥0, ∀j 6=i xj=B; otherwise, allocate all the claims to the only
trader with signal G for a price ωi (G, x−i) |∆≥0, ∀j 6=i xj=B.

Thus, the mechanism behaves as in Case (a), as long as its revenues from allocating the claims
to traders exceed ω̄({v(s)}). Otherwise, the mechanism allocates the claims to the government
at price ω̄({v(s)}). And, as we mentioned above, all the traders within the mechanism find
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it optimal to purchase the claims from the government (if the government has purchased any
from the mechanism) at price ω ({v (s)}), in which case each trader receives share n−1 of the
claims by paying n−1ω ({v (s)}) to the government.

To see that the candidate mechanism is optimal, first, note that the payment ω̄ ({v (s)}) in
equation (100) is defined precisely so that the expected revenues of the proposed mechanism
are equal to the expected value of the claims. Hence, the mechanism designer cannot do
better by never allocating the claims to the government (the revenues in either Case (a) or
(b) are strictly lower). Second, the mechanism is clearly better off allocating the claims to
the government rather than the traders when all the traders received signal B, since the
mechanism at least gets the implicit subsidy from government; and in this case it is also
clearly sub-optimal to not allocate the claims to the government nor the traders. Third, note
that for all realizations of signals such that at least two traders receive signal G, the proposed
mechanism extracts the traders’ full surplus; thus, it cannot do better for those realization
of signals. Finally, if only one trader received signal G and the price ω̄ ({v (s)}) exceeds
ωi (G, x−i) |∆≥0, ∀j 6=i xj=B, then the mechanism is also better off allocating the claims to the
government at price ω̄ ({v (s)}), since otherwise the maximal payment it can extract from this
trader is ωi (G, x−i) |∆≥0, ∀j 6=i xj=B; and vice versa.

The rest of the proof follows the same steps as the proof of Proposition 6. First, since now
the investors value the claims {dt(s))} at

∑
s π(s)(d1(s) + d2(s)), independently of whether

they sell or keep them, the equilibrium claims prices will be undistorted; hence, in the post-
intervention equilibrium q(s) = π(s) ∀s. Second, let Ω denote the set of signal realizations in
which according to the intervention above the government purchases the claims from a given
mechanism. Given the equilibrium asset supply {Bt(s)} where B1(s) = T1(s) + T2(s) and
B2(s) = 0 ∀s and where {Tt(s)} are as given in the proof of Lemma 7, the lump sum taxes
that the government needs to collect from all the sellers in order to fund the intervention are
Tf (s) = P(Ω|s) (ω̄({Bt(s)})− ω({Bt(s)})) ∀s. Finally, the government also makes a transfer
Tu = U − e from entrepreneurs to investors ex-ante to make sure that the latter’s lifetime
welfare is U .

Proof of Proposition 8. Suppose that λζ+ > π(h)− q̄, so that the laissez-faire equilibrium
is in the “no risk-sharing” region (see Proposition 2). By Proposition 4, the equilibrium
welfare of the investors is U I = e. By Lemma 7, when the investors’ lifetime welfare is
U = e, the constrained efficient investment scale (and thus borrowing) is given by kSP0 such
that χ(kSP0 ) =

∑
s π(s)a(s)kSP0 , just as in the benchmark economy analyzed in Section 4.1,

since χ′(kSP0 ) =
∑

s π(s)a(s) + pSPe with pSPe ∈ (gA,A). But that the equilibrium investment
scale K0 can be above kSP0 is illustrated in Figure 3, since all we need to do is compare the
investment scale when λζ+ > π(h) − q̄ to the investment scale when λζ+ = 0. Under the
parameterization χ(k) = χkω, this is equivalent to the following inequalities holding:∑

s π(s)(a(s) + gA)

ω
∑

s π(s)a(s)
< 1 <

π(h)(a(h) + A) + (1− π(h))g−1(a(l) + gA)

(π(h) + (1− π(h))g−1)ω
∑

s π(s)a(s)
. (101)

The first inequality states that χ′(kSP0 ) >
∑

s π(s)(a(s) + gA) or that pSPe > gA, i.e., that the
planner’s return to an additional unit of investment beyond kSP0 is lower than the interest rate
(as required by Assumption 2(i)). The second inequality states that the equilibrium return to
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increasing investment by a unit beyond kSP0 is greater than the riskless interest rate. Note that
though the equilibrium has a higher marginal cost of investment due to premature liquidations
(see denominator in the last term), it also has a higher marginal benefit of investment in the
high state and possibly in the low state, again due to liquidations (see numerator).

B Verification of Consumption Non-Negativity

In Section 2.1, we conjectured that the claims prices qt(s) = q(s) and
∑

s q(s) = 1 are part
of equilibrium. We now verify these conjectures. To do so, it suffices to show that, at the
conjectured prices, every investor’s consumption is non-negative in every period.

We begin with t = 0. We need to show that all investors’ consumptions are non-negative
after they have purchased the claims from the entrepreneurs and participated in the trading
arrangements. In equilibrium, the entrepreneurs’ claims satisfy B1(s) < (a(h) +A)k for all s,
for k such that χ(k) = (a(h) + A)k. Therefore, the consumption of an impatient investor at
t = 0 is:

cI,β=0
0 = e−

∑
s

q(s)B1(s) +
∑

ω, (102)

where
∑
ω denote the (possibly random) payments that he receives in the trading arrange-

ment. Since ω ≥ 0 (by Lemma A.3) and e > 2(a(h) +A)k (by Assumption 1), it follows that
cI,β=0

0 > 0. On the other hand, the consumption of a patient investor at t = 0 is:

cI,β=1
0 = e−

∑
s

q(s)B1(s)− ω, (103)

where ω denotes the (possibly random) payment that he makes in the trading arrangement
that he participates in. From Lemma A.3 and the traders’ participation constraints (PC), we
have that ω ≤ B1(h) < (a(h) + A)k. Thus, cI,β=1

0 > 0 since e > 2(a(h) + A)k.
We next consider t = 1. Let us first look at the investors’ resources prior to financing the

operations of the traditional sector firms. The impatient investors’ resources at t = 1 and state
s are given by B1(s) −

∑
vs, where

∑
vs denotes the (possibly random) allocation of claims

of the mechanism. From the feasibility constraint (FC), we have B1(s) ≥
∑
vs. The patient

investors’ resources at t = 1 and state s are given by B1(s) + vs, where vs is the (possibly
random) allocation of claims that this investor receives in the mechanism he participates in.
Since by Lemma A.3, vs ≥ 0, we must also have B1(s) + vs ≥ 0. Next, observe that the
aggregate resources of the investors at t = 1 are given by B1(s). There are two scenarios in
equilibrium. Either (i) there are no capital liquidations, or (ii) there are liquidations and the

resources required to operate the traditional sector firms are: p(s)K̂1(s) = B1(s) − a(s)K0.
But, in both cases, the investors’ resources B1(s) are more than sufficient to finance these
firms’ operations. Moreover, every investor (impatient or patient) is willing to do so at an
interest rate of one, since the investors do not discount consumption between t = 1 and t = 2.

The investors’ consumption at t = 2 is trivially non-negative, since they (if they finance
these firms) receive positive repayments from the traditional sector firms.

Finally, in the planner’s allocation, each investor receives a transfer T0 = e− χ(kSP0 ) at the
issuance stage; by Assumption 1 and the fact that χ(kSP0 ) < (a(h) + A)kSP0 , we have that
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T0 > χ(k) for k > 0 s.t. χ(k) = (a(h) + A)k. Moreover, at the trading stage, each patient
investor makes a payment of 0 < ωSP (xi, x−i) = n−1 minx E{T1(s) + T2(s)|xi = x, x−i} to the
planner’s trading arrangement; but minx E{T1(s) +T2(s)|xi = x, x−i} ≤ (a(h) +A)k for k > 0
s.t. χ(k) = (a(h) + A)k. Hence, T0 > ωSP (xi, x−i) and each patient investor’s consumption
at t = 0 is non-negative; each impatient investor’s consumption is trivially non-negative since
he receives payments from trading arrangements. Moreover, the investors’ consumptions at
t ∈ {1, 2} are non-negative since Tt(s) ≥ 0 and each investor has a non-negative allocation of
claims to these transfers. It is also straightforward to check that the investors’ consumptions
are also non-negative after the policy interventions described in Propositions 6 and 7, which
implement the constrained efficient allocations.

C Sorting in Secondary Markets

We now provide a microfoundation for the sorting of investors in secondary markets; namely,
that an investor posts his claims in a trading arrangement if and only if he is impatient. To do
so, we will generate common knowledge of gains from trade within each trading arrangement;
that is, we suppose that the traders within a given trading arrangement observe the prefer-
ence type β of the investor who posts his claims for sale in that arrangement. We then use
arguments akin to Milgrom and Stokey (1982) to show that there cannot be trade between
investors based solely on information heterogeneity.

For concreteness, we specify the following timing for the sorting decision. First, each in-
vestor purchases the claims {dt(s)} and designs the trading arrangement µ in which to sell
them. Second, he learns his type (β, x). Finally, he decides whether to post his claims in
the arrangement µ, and whether to become a trader in the trading arrangements designed by
other investors. The timing assumption that the mechanism is designed before the types are
learned is inessential for the arguments that follow.

We make the following indifference-breaking assumptions. First, an investor posts his claims
in a trading arrangement only if his net expected payoff from doing so is strictly positive.
Second, an investor becomes a trader if and only if he is willing to make a strictly positive
payment for some portfolio of claims. This has two immediate implications: (i) an investor is
a trader only if he is patient, and (ii) an investor posts his claims in the trading arrangements
if he is impatient. Therefore, we are only left to prove that in equilibrium no patient investor
would post his claims in a trading arrangement.

Let Ṽ (x) denote the net expected payoff to a patient investor from posting his claims in
the trading arrangement if he has received signal x, then

Ṽ (x) = E

{∑
i∈I

ωi −
∑
i∈I

vis|x

}
, (104)

where {ωi, vih, vil}i∈I denotes the allocations of trader i ∈ I in the arrangement and I is
the (possibly random) set of traders participating in the trading arrangement. Thus, this
investor’s net expected payoff from posting his claims is given by the expected payments he
receives from the traders minus the expected value of the claims that he transfers to them. For
now, we leave the matching process by which traders are matched with trading arrangements
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unspecified, as it is not essential for our arguments.
Let P = {x : Ṽ (x) > 0} denote the equilibrium set of patient investors who post their

claims for sale. Thus, in equilibrium, if the traders are matched with a mechanism of a
patient investor, they know that this investor has signal x ∈ P . As a result, the traders’ par-
ticipation constraints imply that the traders’ (aggregate) expected payoff from participating
in the trading arrangement of a patient investor must be non-negative, i.e.

E

{∑
i∈I

vis −
∑
i∈I

ωi|x ∈ P

}
≥ 0. (105)

But then, we must have that P = ∅, since otherwise the payoff in (105) would be strictly
negative, a contradiction.

Thus, we have shown that a fraction λ of investors post their claims in trading arrangements,
whereas a fraction 1 − λ of investors becomes traders in those trading arrangements. In the
text, we had assumed that parameters satisfy λn = 1−λ and that there is an exact matching
of traders with arrangements: each trading arrangement is matched with n randomly selected
traders. For the comparative statics illustrated in Figure 3, it is useful to generalize this
matching process slightly in order to avoid the integer problem. To this end, let n ≡ b1−λ

λ
c,

n̄ ≡ d1−λ
λ
e and α ≡

1−λ
λ
−n

n̄−n , and suppose that a fraction α of randomly selected trading
arrangements is matched with n̄ randomly selected traders and the rest with n traders. This
matching process ensures that all trading arrangements and traders are matched and, when
n = n̄, then as in our baseline case each trading arrangement is matched with exactly n = 1−λ

λ

traders. Furthermore, as λ increases continuously from 0 to 1
2
, the number of traders in each

trading arrangement decreases gradually to one.

D Alternative Benchmark

In this section, we consider an alternative benchmar benchmark economy, in which information-
trading frictions are present but entrepreneurs’ output is fully pledgeable. In what follows,
we sketch the main results, though a formal results are available upon request.

The manner by which investors re-trade claims in secondary markets and price them ex-ante
is essentially unchanged, and given by Proposition 1 and Corollary 1. The only exception is
that now the entrepreneurs’ claims may also pay off in the final period:

q(l) = 1− q(h), q(h)


= π(h)− λζ+ if B1(h) +B2(h) > B1(l) +B2(l)

∈ [π(h)− λζ+, π(h) + λζ−] if B1(h) +B2(h) = B1(l) +B2(l)

= π(h) + λζ− if B1(h) +B2(h) < B1(l) +B2(l)

.

(106)
Clearly, in equilibrium entrepreneurs will never liquidate capital, i.e., K1(s) = K0 ∀s, and

as a result capital prices satisfy p(s) = A ∀s. Intuitively, the reason is that entrepreneurs
can always promise investors to delay payments until t = 2 rather than liquidate capital
prematurely. As a result, the entrepreneurs’ marginal value of funds at t = 1 is equalized
across states and there is therefore full risk-sharing. In turn, the entrepreneur’s optimal
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investment scale satisfies:
χ(K0) =

∑
s

q(s)(a(s) + A), (107)

where χ(K0) =
∑

t,s q(s)Bt(s), just as in Lemma 4. Thus, to characterize the equilibrium, we
are left to determine {Bt(s)} and q(h), which will also pin down the ex-ante investment scale
K0. There are three cases to consider:

Case 1. Suppose that χ(kFB) ≤ (a(l) + A)kFB. This condition states that entrepreneurs
can fund the first-best scale investment with non-contingent claims. Then, in equilibrium,
entrepreneurs’ investment scale is undistorted, i.e., K0 = kFB, and entrepreneurs fund it
with non-contingent claims, i.e., B1(s) = B1 = min{a(l)kFB, χ(kFB)} and B2(s) = B2 =
χ(kFB) − B1 < AkFB ∀s. Finally, the equilibrium claims prices are actuarialy fair, i.e.,
q(s) = π(s) ∀s.
Case 2. Suppose that χ(kFB) > (a(l) +A)kFB, but that χ′(k) ≥

∑
s q(s)(a(s) +A) for q(h) =

π(h) − λζ+ and k s.t. χ(k) = (a(l) + A)k. This condition states that, though entrepreneurs
cannot fund the first-best scale with non-contingent claims, they would rather limit ex-ante
investment than issue contingent claims at distorted claims prices. Then, in equilibrium,
entrepreneurs’ investment scale is depressed below first-best, i.e., K0 < kFB s.t. χ(K0) =
(a(l) +A)K0, and entrepreneurs fund it with non-contingent claims, i.e., B1(s) = B1 = a(l)k0

and B2(s) = B2 = Ak0 ∀s. Finally, the equilibrium claims prices are such that entrepreneurs

are indifferent to borrowing an additional unit against state h: q(h) = χ′(K0)−a(l)−A
a(h)−a(l)

from (107).

Case 3. Suppose that χ(kFB) > (a(l) + A)kFB, and that χ′(k) <
∑

s q(s)(a(s) + A) for
q(h) = π(h) − λζ+ and k s.t. χ(k) = (a(l) + A)k. This condition states that, though en-
trepreneurs cannot fund the first-best scale with non-contingent claims, they would like to
expand investment by issuing contingent claims at distorted claims prices. Then, in equilib-
rium, entrepreneurs’ investment scale is depressed below first-best, i.e., K0 < kFB such that
(107) holds, and entrepreneurs fund it with contingent claims, i.e., a(l)K0 = B1(l) < B1(h) =
q(h)−1 · (χ(K0)− (1− q(h))a(l)K0 − AK0) ∈ (a(l)K0, a(h)K0), and B2(l) = B2(h) = AK0.
Finally, the equilibrium claims prices satisfy q(h) = π(h)− λζ+.

This completes the equilibrium characterization. We now characterize the solution to the
planner’s problem and compare it with the laissez-faire allocations. This analysis follows
closely in the footsteps of the analysis in Section 5. First, it is straightforward that Lemmas
5-6 and Corollary 4 continue to hold in this benchmark economy. Thus, the only change in
the planner’s allocations from those found in Section 5 is the ex-ante investment scale and
the ex-post allocation of capital. Now, clearly, the planner also will never liquidate capital
prematurely, since she can simply transfer goods to the investors in the final period, i.e.,
kSP1 (s) = kSP0 for all s. And, the final observation is that the planner always chooses to invest
at first-best scale ex-ante, i.e., k0 = kFB. The latter is intuitive. As project cashflows are fully
pledgeable, the planner no longer faces a tradeoff between delivering utility to investors and
the efficiency of investment: no matter what feasible level of welfare U the planner promises
to investors, she always maximizes social welfare by investing in capital until the net present
value of additional unit of investment is equal to zero, evaluated at undistorted claims prices.

We can now compare the laissez-faire allocations with those of the planner. By inspection,
we can immediately see that in Case 1 and Case 2 the laissez-faire allocations are constrained
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inefficient as they do not coincide with those of the planner. Instead, in Case 1, the laissez-
faire allocations are constrained efficient. Here, entrepreneurs’ claims are non-contingent and
thus are not mispriced/misallocated in secondary markets; and entrepreneurs never liquidate
capital and their ex-ante investment scale is at first-best.
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