
Estimating overidenti�ed, nonrecursive,
time-varying coe¢ cients structural VARs

Fabio Canova Fernando J. Pérez Forero�

May 8, 2012

Abstract

This paper provides a method to estimate time varying coe¢ cients struc-
tural VARs which are non-recursive and potentially overidenti�ed. The pro-
cedure allows for linear and non-linear restrictions on the parameters, main-
tains the multi-move structure of standard algorithms and can be used to
estimate structural models with di¤erent identi�cation restrictions. We study
the transmission of monetary policy shocks and compare the results with those
obtained with traditional methods.
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1 Introduction

Vector autoregressive (VAR) models are routinely employed to summarize the prop-
erties of the data and new approaches to the identi�cation of structural shocks have
been suggested in the last 10 years (see Canova and De Nicoló, 2002, Uhlig, 2005,
and Lanne and Lütkepohl, 2008). Constant coe¢ cient structural VAR models are
useful tools to understand how the economy responds to shocks but they may pro-
vide misleading information when the structure is changing over time. Cogley and
Sargent (2005) and Primiceri (2005) were among the �rst to estimate time varying
coe¢ cient (TVC) VAR models and Primiceri also provides a structural interpreta-
tion of the dynamics using recursive restrictions on the impact response of shocks.
Following Canova et al. (2008), Canova and Gambetti (2009), the literature nowa-
days mainly employes sign restrictions to identify structural shocks in TVC-VARs
and the constraints used are, generally, theory based and robust to variations in the
parameters of the DGP, see Canova and Paustian (2011).
While sign restrictions o¤er a simple and intuitive way to impose theoretical

constraints on the data they are weak and identify a region of the parameter space,
rather than a point. Furthermore, several implementation details are left to the re-
searcher making comparison exercises di¢ cult to perform. Because of these features,
some investigators still prefer to use �hard�non-recursive identi�cation restrictions,
using the terminology of Waggoner and Zha (1999), even though these constraints
are not theoretically abundant. However, when TVC models are used, existing
estimation approaches can not deal with this type of identi�cation restrictions.
This paper proposes a uni�ed framework to estimate structural VARs. The

framework can handle time varying coe¢ cient or time invariant models, with hard
recursive or non-recursive identi�cation restrictions, and can be used in systems
which are just-identi�ed or overidenti�ed. Non-recursive structures have been ex-
tensively used to accommodate structural models which are more complex than
those permitted by recursive schemes. As shown, e. g., by Gordon and Leeper
(1994), inference may crucially depend on whether a recursive or a non-recursive
scheme is used. In addition, although just-identi�ed systems are easier to construct
and estimate, over-identi�ed models have a long history in the literature (see e.g.
Leeper et al., 1996, or Sims and Zha, 1998), and provide a natural framework to
test interesting theoretical hypotheses.
TVC-VAR models are typically estimated using a Bayesian multi-move Gibbs

sampling routine. In this routine, a state space system is speci�ed (see Carter and
Kohn,1994, and Kim and Nelson,1999) and the parameter vector is partitioned into
blocks. When stochastic volatility is allowed for, an extended state space represen-
tation is used. If a recursive contemporaneous structure is assumed, one can sample
the contemporaneous coe¢ cients matrix equation by equation, taking as predeter-
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mined draws for the parameters belonging to previous equations. However, when
the system is non-recursive, the sampling must be done di¤erently.
To perform standard calculations, one also needs to assume that the covari-

ance matrix of structural contemporaneous parameters is block-diagonal. When the
structural model is overidenti�ed, such an assumption may be implausible. However,
relaxing the diagonality assumption complicates the computations since the blocks
of the conditional distributions used in the Gibbs sampling do not necessarily have a
known format. Primiceri (2005) suggests to use a Metropolis-step to deal with this
problem. We follow his lead but nest this step into Geweke and Tanizaki (2001)�s
approach to estimate general nonlinear state space models, modi�ed to follow the
multi-move Gibbs sampling logic. We employ Geweke and Tanizaki�s setup because
it allows for non-linear restrictions on the parameters, and thus can accommodate
the structural systems which are the object of interest of this paper and others.
We use the methodology to identify monetary policy shocks in a non-recursive,

overidentifed TVC system similar to the one employed by Robertson and Tallman
(2001), Waggoner and Zha (2003) and Sims and Zha (2006). We compare the
results with those obtained with a recursive, just-identi�ed TVC models and with
an overidenti�ed, but �xed coe¢ cient model. We show that there are important
time variations in the variance of the monetary policy shock and in the estimated
contemporaneous coe¢ cients. These time variations translate in important changes
in the transmission of monetary policy shocks which are consistent with the idea that
the ability of monetary policy to in�uence the real economy has waned, especially in
the 2000s. We also show that a recursive identi�cation scheme or a �xed coe¢ cient
model produce a di¤erent characterization of the liquidity e¤ect. Furthermore, the
properties of the money demand function and its time variations would have been
considerably di¤erent.
The paper is organized as follows: Section 2 presents the methodology employed

to estimate non-recursive, overidenti�ed TVC-VAR models. Section 3 applies it
to study the transmission of monetary policy shocks. Section 4 summarizes the
conclusions and discusses potential applications of the approach.

2 The methodology

Consider a M � 1 vector of non-stationary variables yt; t = 1; : : : ; T and assume
that it can be represented with a �nite order autoregression:

yt = B0;tDt +B1;tyt�1 + :::+Bp;tyt�p + ut (1)

where B0;t is a matrix of coe¢ cients on a �M � 1 vector of deterministic variables
Dt; Bi;t; i = 1; : : : ; p are square matrices containing the coe¢ cients of the lags of the
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endogenous variables and ut � N (0;
t), where 
t is symmetric, positive de�nite,
and full rank for every t. For the sake of presentation, we do not allow for exogenous
variables, but the setup can be easily extended to account for them, if they exist.
Equation (1) is a reduced form and the error ut does not have an economic inter-
pretation. Denote the structural shocks by "t � N (0; I). Let the mapping between
structural and reduced form shocks be

ut = A
�1
t �t"t (2)

where At denotes the contemporaneous coe¢ cients matrix and �t is a diagonal
matrix containing the standard deviations of the structural shocks. The structural
V AR (p) model is:

yt = X
0
tBt + A

�1
t �t"t (3)

whereX 0
t = IM


�
D0
t; y

0
t�1; : : : ; y

0
t�k
�
andBt =

�
vec (B0;t)

0 ; vec (B1;t)
0 ; : : : ; vec (Bp;t)

0�0
are a M � K matrix and a K � 1 vector, where K = �M �M + pM2. As it is
standard in the literature, assume that the parameter blocks (Bt; At;�t) evolve as
independent random-walks:

Bt = Bt�1 + �t (4)

�t = �t�1 + �t (5)

log (�t) = log (�t�1) + �t (6)

where �t denotes the vector of free parameters of At, �t = diag (�t) and let:

V = V ar

0BB@
2664
"t
�t
�t
�t

3775
1CCA =

2664
I 0 0 0
0 Q 0 0
0 0 S 0
0 0 0 W

3775 (7)

Thus, the setup is able to capture time variations in i) the lag structure (see 4),
ii) the contemporaneous reaction parameters (see 5) and iii) the structural variances
(see 6): As shown in Canova et al. (2012), models with breaks at a speci�c date can
be accommodated by adding restrictions on the law of motion (4)� (6).

2.1 Identi�cation

From the restrictions we have imposed, we have


t = A
�1
t �t�

0
t

�
A�1t

�0
(8)

Thus, a TVC-SVAR system is locally identi�ed if there exists a parameter vector
�t = (�0t; �

0
t)
0 which is a solution to the system of equations (8) for each t. The
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system is globally-identi�ed if there exists a parameter vector �t = (�0t; �
0
t)
0 ; which

is a unique solution to the system of equations (8) at each t: As shown by Rubio-
Ramírez et al. (2010), a globally-identi�ed SVAR can be, at the same time, non-
recursive and/or overidenti�ed.

2.2 Relaxing standard assumptions

In a constant coe¢ cient SVAR one typically has the option to identify shocks im-
posing short run, long run, or heteroschedasticity restrictions. In TVC-VARs only
restrictions on At are employed, but there is no special reason for this choice, apart
from estimation tractability. Furthermore, it is common to assume a lower triangular
format for At even though this choice is restrictive in terms of the structural models
it can accommodate. We next show how one can embed a general identi�cation
scheme into a TVC-VAR setup and perform proper Bayesian inference.
Consider the concentrated model obtained with estimates of the reduced-form

coe¢ cients bBt:
At

�
yt �X 0

t
bBt� = Atbyt = �t"t (9)

Noticing that vec(Atbyt) = vec(IMAtbyt) = (by0t 
 IM)vec(At); and that vec(�t"t) =
�t"t; and since we can decompose At as

vec (At) = SA�t + sA (10)

where SA and sA are matrices with ones and zeros of dimensions M2 � dim(�) and
M2 � 1; respectively (see Amisano and Giannini, 1997, and Hamilton, 1994), the
concentrated model is

(by0t 
 IM) (SA�t + sA) = �t"t
Thus, adding the law of motion of the �t;the state space iseyt = Zt�t + �t"t (11)

�t = �t�1 + �t (12)

where eyt � (by0t 
 IM) sA; Zt � � (by0t 
 IM)SA; and V ar (�t) = S. The question is

how to draw �T � f�tgTt=1, from its smoothed posterior distribution p
�
�T j eyT ;�T ; S; cBT�.

The standard approach is to partition �t into blocks associated with each equa-
tion, say �t =

�
�10t ; �

20
t ; : : : ; �

M 0
t

�0
; and assume that these blocks are independent, so

that S = diag (S1; : : : ; SM). Under these assumptions, the posterior is

p
�
�T j eyT ;�T ; S; cBT� = MY

m=2

p
�
�m;T j �m�1;T ; eyT ;�T ; S; cBT��p��1;T j eyT ;�T ; S; cBT�

(13)
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Thus, for each equation m, the coe¢ cients in equation m � j; j � 1 are treated as
predetermined and changes in coe¢ cients across equations are uncorrelated. The
setup is convenient because equation by equation estimation is possible. Since the
factorization does not necessarily have an economic interpretation, it may make
sense to assume that the innovations in the �t blocks are uncorrelated. However, if
we insist that each element of �t has some economic interpretation, the diagonality
assumption of S is no longer plausible. For example, if in the SVAR there are policy
and non-policy parameters, it will be hard to assume that non-policy parameters are
strictly invariant to changes in the policy parameters (see e.g. Lakdawala, 2011).
The procedure we suggest relaxes both assumptions, that is, the vector �t is

jointly drawn and S is not necessarily block diagonal. This modi�cation allows
us to deal with recursive, non-recursive, just-identi�ed or overidenti�ed structural
models in a uni�ed framework. The modi�cation is not without costs. In fact,
it is not immediate to sample the vector �T using the system (11) � (12) ; while
preserving Carter and Kohn (1994)�s multi-move approach because a non-diagonal
S makes the posterior for �T non-standard.
To solve this problem, we follow a lead of Primiceri (2005, pp. 850) and use

a Metropolis step to draw �T but we embed the process into a modi�ed version
of Geweke and Tanizaki (2001)�s routine for estimating general state space models,
which takes into account the fact that parameters are time varying. The setup is
appealing because it allows us to consider SVAR with linear or non-linear parameter
restrictions and Gaussian or non-Gaussian shocks within the same framework, and
this greatly expands the type of structural models one may want to consider.

2.3 A non-recursive, overidenti�ed SVAR

Next, we provide an example of a particular overidenti�ed structural model.
The vector of endogenous variables is yt = (Pcomt;Mt; Rt; GDPt; Pt; Ut)

0, where
Pcomt represents a commodity price index, Mt a money aggregate, Rt the nominal
interest rate, GDPt a measure of aggregate output, Pt a measure of aggregate prices
and Ut the unemployment rate. Since researchers working with this set of variables
are typically interested in their dynamic response to monetary policy shocks, see
e.g. Sims and Zha (2006), the structure of At is as in table 1, where X indicates a
non-zero coe¢ cients.
Thus, the structural form is identi�ed from the VAR as follows:

1. Information equation: Commodity prices (Pcomt) convey information about
recent developments in the economy. Therefore, it is assumed that they react
contemporaneously to every structural shock.
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Reduced form n StructuralPcomtMtRtGDPt Pt Ut
Information X X X X X X
Money demand 0 X X X X 0
Monetary policy 0 X X 0 0 0
Non-policy 1 0 0 0 X 0 0
Non-policy 2 0 0 0 X X 0
Non-policy 3 0 0 0 X X X

Table 1: Identi�cation restrictions

2. Money demand equation: Within the period money demand
�
Md
t

�
; is a func-

tion of core macroeconomic variables (Rt; GDPt; Pt).

3. Monetary policy equation: The interest rate (Rt) is used as an instrument
for controlling the money supply (M s

t ). No other variable contemporaneously
a¤ects this equation.

4. Non-policy block : Following, e.g., Bernanke and Blinder (1992), the non-policy
variables (GDPt; Pt; Ut) react to policy changes, money changes or informa-
tional changes only with delay. This setup can be formalized by assuming
that the private sector only considers lagged values of these variables as states
or that private decisions have to be taken before the current values of these
variables are known. The relationship between the variables in the non-policy
block is left unmodeled and, for simplicity, a recursive structure is assumed.

Once the intuition behind the identi�cation assumptions is clear, it is easy to
understand why independence in coe¢ cients of di¤erent equations is unappealing:
changes in policy and non-policy coe¢ cients are likely to be correlated. Let the
vector of structural innovations be "t =

�
"it "mdt "mpt "yt "pt "ut

�0
. Then, the

structural model is

26666664
1 �1;t �3;t �5;t �9;t �12;t
0 1 �4;t �6;t �10;t 0
0 �2;t 1 0 0 0
0 0 0 1 0 0
0 0 0 �7;t 1 0
0 0 0 �8;t �11;t 1

37777775
| {z }

At

�

26666664
Pcomt

Mt

Rt
GDPt
Pt
Ut

37777775 = A
+
t (L)

26666664
Pcomt�1
Mt�1
Rt�1
GDPt�1
Pt�1
Ut�1

37777775+�t
26666664
"it
"mdt
"mpt
"yt
"pt
"ut

37777775
(14)
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where we normalize the main diagonal of At so that the left-hand side of each
equation corresponds to the dependent variable and A+t (L) is a function of At and
Bt. Moreover,

�t =

26666664
�it 0 0 0 0 0
0 �mdt 0 0 0 0
0 0 �mpt 0 0 0
0 0 0 �yt 0 0
0 0 0 0 �pt 0
0 0 0 0 0 �ut

37777775
is the matrix of standard deviations of the structural shocks.
The structural model (14) is non-recursive and overidenti�ed by 3 restrictions.

Overidenti�cation obtains because the policy equation is di¤erent from the Taylor
rule generally employed in the literature. Nevertheless, the system is globally iden-
ti�ed and therefore suitable for interesting policy experiments. In addition, while
the structural model is conditionally linear, it is easy to conceive setups where the
structural model has a non-linear state space representation. For example, Rubio-
Ramírez et al. (2010) impose identi�cation restrictions directly on the impulse
response function and these imply non-linear constraints on At and A+t (L). Long
run restrictions of the type originally imposed by Blanchard and Quah (1989) also
generate non-linear constraints on the structural parameters. Clearly, one could
also relax the random walk assumption and consider a non-linear law of motion for
the free parameters. Thus, it seems reasonable to have a general setup that can
accommodate for all these possibilities.

2.4 Estimation

The structural model that needs to be estimated has a large number of stochastic
parameters. Since (3) ; (4) ; (5) ; (6) de�ne a hierarchical structure, a Bayesian per-
spective is employed and posterior distributions for sequences of the parameters are
derived. As it is standard in the literature, see e.g. Kim and Nelson (1999) and
Koop (2003), the Gibbs sampler will be used to draw posterior sequences. For this
purpose, consider the general non-linear state-space system

byt = zt (�t) + "t (15)

�t = tt (�t�1) +Rt (�t�1) �t (16)

where byt and "t are M � 1 vectors; �t and �t are N � 1 vectors; "t � N (0; Q"t) and
�t � N (0; Q

�
t ). Assume that zt (:), tt (:) and Rt (:) are vector-valued functions.
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To estimate such a system, it is typical to linearize it around the previous forecast
of the state vector, so that

zt (�t) ' zt
�batjt�1�+ bZt ��t � batjt�1�

tt (�t�1) ' tt
�bat�1jt�1�+ bTt ��t�1 � bat�1jt�1�
Rt (�t�1) ' bRt

where bZt, bTt and bRt are N � N matrices corresponding to the Jacobians of zt (:),
tt (:) and Rt (:), respectively, evaluated at �t = batjt�1. Thus, the approximated linear
state-space is byt ' bZt�t + bdt + "t (17)

�t ' bTt�t�1 + bct + bRt�t (18)

where bdt = zt �batjt�1�� bZtbatjt�1 (19)

bct = tt �bat�1jt�1�� bTtbat�1jt�1 (20)

Equations (17) and (18) are similar to our original equations (11) and (12). When
zt (:) and tt (:) are linear, bdt = 0 and bct = 0. In the cases considered by Rubio-
Ramírez et al. (2010) or Blanchard and Quah (1989) bdt 6= 0, while if the law of
motion of the coe¢ cient is non-linear bct 6= 0. This kind of system can be estimated
with the Extended Kalman Filter described below.
The posterior distribution of the parameters � � (BT ; �T ;�T ; sT ; V ) is

p(� j yT ) = p(yT j �)p(�)
p(yT )

/ p(yT j �)p(�) (21)

where p(yT j �) is the likelihood, p(�) is the prior and s an indicator de�ned below.
Let

p(�) = p(BT )p(�T )p(�T )p(sT )p(V ) (22)

and factor the likelihood function L(� j yT ) = p(yT j �) as

L(� j yT ) = L(V j yT )� L(sT j V; yT )� L(�T j sT ; V; yT )
� L(�T j �T ; sT ; V; yT )� L(BT j �T ;�T ; sT ; V; yT ) (23)

To evaluate the posterior p(� j yT ) via the Gibbs sampler, we need to construct
the conditionals p

�
�i j �j; yT

�
; j 6= i, and draw from them. The algorithm below

describes how this can be done.
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2.4.1 The algorithm

Let
n
fsj;l;tgTt=1

oM
l=1

be a discrete indicator variable taking j = 1; : : : ; k possible

values. The procedure has 7 steps and 5 sampling blocks:

1. Set an initial value for (BT0 ; �
T
0 ;�

T
0 ; s

T
0 ; V0).

2. Draw BTi from from p
�
BTi j �Ti�1;�Ti�1; sTi�1; Vi�1

�
� IB

�
BTi
�
; using Kalman

smoothed estimatesBtjT obtained from the system (3) ; and compute byTi , where
IB (:) truncates the posterior to insure stationarity of impulse responses.

3. Draw �Ti from

p
�
�Ti j byTi ;�Ti�1; sTi�1; Vi�1� = p

�
�i;T j byTi ;�i�1;T ; si�1;T ; Vi�1�� (24)

T�1Y
t=1

p
�
�i;t j �i;t+1; byti ;�i�1;t; si�1;t; Vi�1�

/ p
�
�i;T j byTi ;�i�1;T ; si�1;T ; Vi�1��

T�1Y
t=1

p
�
�i;t j byti ;�i�1;t; si�1;t; Vi��

ft+1 (�i;t+1 j �i;t;�i�1;t; si�1;t; Vi�1)

using the approach described below.

4. Draw �Ti using a log-normal approximation to their distribution as in Kim
et al. (1998). After sampling

�
BTi ; �

T
i

�
, the state space is linear but the

error term is not normally distributed. In fact, given
�
BTi ; �

T
i

�
, the model is

composed of bAteyt = y��t = �t"t

and (6). Consider the l � th equation y��l;t = �l;t"l;t, where �l;t is the l�th
element in the main diagonal of �t and "l;t is the l�th element of "t. Then

y�t = log
h�
y��l;t
�2
+ c
i
� 2 log (�l;t) + log "2l;t (25)

where c is a small constant. Since "l;t is Gaussian, log "2l;t is log (�
2) distrib-

uted, it can be approximated by a mixture of normals. Conditional on st,
the indicator for the mixture of normals, the model is linear and Gaussian.
Hence, standard Kalman Filter recursions can be used to draw f�tgTt=1 from
the system (25) � (6). To ensure independence of the structural variances,
each element of the sequence f�l;tgMl=1 is sampled assuming a diagonal W .
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5. To draw sTi , conditional on �
T
i , y

�
t , given l and t, draw u � U (0; 1) and

compare it to

P
�
sl;t = j j y�l;t; log (�l;t)

�
/ qj � �

�
y�l;t � 2 log (�l;t)�mj + 1:2704

�j

�
;

j = 1; : : : ; k; l = 1; : : : ;M

where � (:) is the normal probability density function, and the term inside
the function is the standardized error term log "2l;t.Then assign sl;t = j i¤
P
�
sl;t � j � 1 j y�l;t; log (�l;t)

�
< u � P

�
sl;t � j j y�l;t; log (�l;t)

�
.

6. Draw Vi from P
�
Vi j �Ti ; byTi ;�Ti�1; sTi�1�. The matrix Vi is sampled assuming

that each block follows an independent Inverted-Wishart distribution.

7. Use BTi ; �
T
i ;�

T
i ; s

T
i ; Vi as initial values for the next iteration. Repeat 2 to 6 for

i = 1; : : : ; N .

2.4.2 The details in step 3

For step 3 we use a Metropolis step to decide whether the draw from a proposal
distribution is retained or not. The densities p (�t j byt;�t; s; V ) are obtained ap-
plying the Extended Kalman Smoother (EKS) to the original system of nonlinear
equations. To draw �Ti given byTi ;�Ti�1; sTi�1; Vi�1, we proceed as follows:
1. If i = 0, take an initial value �T0 = f�0;tg

T
t=1. If not,

2. Given �Ti�1, compute
n
�
�(i�1)
tjt+1 ; P

�(i�1)
tjt+1

oT
t=1

using the EKS where
n
P �tjt+1

oT
t=1

denotes the covariance matrix of
n
��tjt+1

oT
t=1
.

3. Generate a candidate draw zT = fztgTt=1, where for each p�� (zt j �i�1;t) =

N
�
�i�1;t; rP

�(i�1)
tjt+1

�
, r is a constant,t = 1; : : : ; T . Let p��

�
zT j �Ti�1

�
=

TY
t=1

p�� (zt j �i�1;t).

4. Compute � =
p(zT )�p��(�Ti�1jzT )
p(�Ti�1)�p��(zT j�Ti�1)

; where p (:) is the RHS of (24) using the EKS

approximation. Draw a v � U (0; 1). Set �Ti = zT if v < ! and �Ti = �Ti�1
otherwise, where

! �
�
min f�; 1g ; if I�

�
zT
�
= 1

0; if I�
�
zT
�
= 0

and I� (:) is a truncation indicator.
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Finally, steps 2 to 4 in this sub-loop are repeated every time step 3 of the main
loop is executed.

2.4.3 Extended Kalman Smoother

To apply the EKS to our system of equations, we �rst predict the mean and variance
at each t = 1; : : : ; T : batjt�1 = tt�1 �bat�1jt�1�

Ptjt�1 = bTtPt�1jt�1 bT 0t + bRtQ�t bR0t
and compute Kalman gain:


t = bZ 0tPtjt�1 bZt +Q"t
Kt = Ptjt�1 bZ 0t
�1t

As new information arrives, estimates of �t and variance are updated according to

batjt = batjt�1 +Kt

�
yt � zt

�batjt�1��
Ptjt = Ptjt�1 � Ptjt�1 bZ 0t
�1t bZtP 0tjt�1

To smooth the estimates, set ��T jT = baT jT , P �T jT = PT jT and , for t = T � 1; : : : ; 1;
compute

��tjt+1 = batjt + Ptjt bZ 0tP�1t+1jt ���t+1jt+2 � bZ 0tbatjt�
P �tjt+1 = Ptjt � Ptjt bZ 0t hPt+1jt + bRtQ�t bR0ti�1 bZtP 0tjt�1

To start the iterations we use ba1j0 = 0N�1 and P0j0 = IN . Notice that since the
original tt (:) and zt (:) are used for computing prediction and updating equations,bdt nor bct do not directly enter here.
3 An Application

This section applies our algorithm to study the transmission of monetary policy
shocks in an overidenti�ed, non-recursive structural TVC-VAR. We are interested
in knowing whether the propagation of policy shocks has changed over time and in
identifying the sources of variation. For comparison, we will also examine the con-
clusions obtained estimating a more standard recursive, just identi�ed TVC system,
and an overidenti�ed SVAR with constant coe¢ cients.
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Bprior � N
�
B; 4 �VB

�
IB (:) Qprior � IW

�
k2Q �VB;
(1 +K)

�
�prior � N (�; 4 � diag (abs (�))) I� (:) Sprior � IW

�
k2S � diag (abs (�)) ;

1 + dim�

�
log (�prior) � N (�; 10 � IM) W prior

i � IW (k2W ; 1 + 1) ; i = 1; : : : ;M

Table 2: Prior distributions

3.1 The Data

Data comes from the International Financial Statistics (IFS) database at the Inter-
national Monetary Fund and from the Federal Reserve Board (www.
imfstatistics.org/imf/about.asp and www.federalreserve.gov/econresdata/
releases/statisticsdata.htm, respectively). The sample is 1959:I - 2005:IV. We stop
at this date to avoid the last �nancial crisis and to compare our results to those
of Sims and Zha (2006), who use a Markov switching model over the same sample.
The GDP de�ator, the unemployment rate, the aggregate Gross Domestic Product
index (Volume, base 2005=100), the commodity prices index, and M2 are from IFS,
the Federal Funds rate is from the Fed. All the variables are expressed in annual
rate changes, i.e. y�t = log (yt) � log (yt�4), except for the Federal Funds and the
unemployment rate, and standardized, that is, xt = (y�t �mean (y�t )) =std (y�t ), to
have all the variables on the same scale.

3.2 The structural model, the prior and computation details

The VAR includes six variables and it is estimated with 2 lags. This is what the
BIC criteria selects for the constant coe¢ cient version of the model. The structural
system is the one in section 2.3, it is non-recursive and overidenti�ed. The priors
are in Table 2, are proper, and conjugate for computational convenience.
With these priors, the conditional posteriors will be of Normal, Inverted Wishart

type. To calibrate the prior, the �rst 40 observation are used as a training sample:
the reduced-form parameters B and VB are estimated with OLS; the structural
parameters � and � with Maximum Likelihood using 100 di¤erent starting points.
We set k2Q = 0:5 � 10�4 and k2S = 1 � 10�3; k2W = 1 � 10�4 and, in line with the
literature, we set k = 7. A total amount of 150; 000 draws for the Gibbs sampler
routine were performed, the �rst 100; 000 were discarded and one every 100 of the
remaining draws was used for inference. Convergence was checked using standard
statistics. To insure stationarity of the estimated system, draws for Bt are moni-
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tored, the companion form associated with (3) is computed and the draw discarded
if it does not satisfy the stability condition. The indicator function I� (:) ; which is
used to eliminate outlier draws, is uniform over the set (�20; 20) : In our application
all 150; 000 draws were inside the bounds, so the constraint is not binding. Finally,
the acceptance rate for the Metropolis step is 20:3 percent.
Since the structural model has M = 6, and dim(�) = 12, SA; sA are

SA =

2666666666666666666666666666666664

06�dim(�)�
01�(1�1) 1 01�(dim(�)�1)

�
01�dim(�)�

01�(2�1) 1 01�(dim(�)�2)
�

03�dim(�)�
01�(3�1) 1 01�(dim(�)�3)

��
01�(4�1) 1 01�(dim(�)�4)

�
04�dim(�)�

01�(5�1) 1 01�(dim(�)�5)
��

01�(6�1) 1 01�(dim(�)�6)
�

02�dim(�)�
01�(7�1) 1 01�(dim(�)�7)

��
01�(8�1) 1 01�(dim(�)�8)

��
01�(9�1) 1 01�(dim(�)�9)

��
01�(10�1) 1 01�(dim(�)�10)

�
03�dim(�)�

01�(11�1) 1 01�(dim(�)�11)
��

01�(12�1) 1 01�(dim(�)�12)
�

05�dim(�)

3777777777777777777777777777777775
sA = [e1; e2; e3; e4; e5; e6]

0

where ei are vectors in RM with

ei = [ei;j]
M
j=1 such that ei;j =

�
1; j = i
0; j 6= i :

Finally, the computational time for each version of the Non-recursive-TVC VAR
is about 10 hours, roughly the same as the computational time needed to estimate
a recursive-TVC-VAR. Computations were performed on an Intel (R) CORE(TM)
i5-2400 CPU @ 3.1GHz machine with 16GB of RAM.

3.3 Time variations in structural parameters

We start by describing the time variations that our model delivers. In �gure 1 we
report the highest 68 percent posterior tunnel for the variability of the monetary
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Figure 1: Median and posterior 68 percent tunnel, volatility of monetary policy
shock.

policy shock and in �gure 2 the highest 68 percent posterior tunnel for the non-zero
contemporaneous structural parameters �t.
There are signi�cant changes in the standard deviation of the policy shocks and

a large swing in the late 1970s-early 1980s is visible. Given the identi�cation we
use, this increase in volatility must be attributed to some unusual and unexpected
policy action, which made the typical relationship between interest rates and money
growth di¤erent. This outcome is consistent with the arguments of Strongin (1995)
and Bernanke and Mihov (1998), who claim that monetary policy during the Volker
era was run di¤erently that in the 1960s and the 1970s.
Figure 2 indicates the non-policy parameters [�7;t; �8;t; �11;t]

0 exhibit considerable
time variations which are a posteriori signi�cant. Note that it is not only the
magnitude that changes; the sign of the posterior tunnel is also a¤ected. Also worth
noting is the fact that both the GDP coe¢ cient in the in�ation equation and the
in�ation coe¢ cient in the unemployment equations move from negative to positive,
suggesting a generic switch in the slope in the Phillips curve.
The parameter �2;t, which controls the reaction of the nominal interest rates to

money growth, also displays considerable changes. In particular, while in the 1970s
and in the 1980s the relationship between interest rate and money growth was
negative and signi�cant, it weakens in the late 1990s, and disappears completely in
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Figure 2: Non-Recursive estimates of �

the early 2000s. Thus, during this last part of the sample, interest rates were no
longer used to control the amount of money supply in circulation.
The coe¢ cients of the money demand equation, [�4;t; �6;t; �10;t]

0 are also unstable.
For example, the elasticity of money demand to the nominal interest rate is negative
at the beginning of the sample, as theory would suggest; it turns strongly positive
up to the middle of the 1980s, and slowly and continuously declines after that. Since
the beginning of the 1990s, the coe¢ cient turns negative once again and becomes
strongly negative in the 2000s. Also interesting is the fact that the elasticity of
money (growth) demand to in�ation is very low and �uctuating around zero. Thus,
homogeneity of degree one of money in prices does not seem to hold.
The parameters of the information equation are also time varying. However,

changes look more like serially correlated variations around a constant mean. In
fact, the mean level at the beginning and at the end of the sample is similar.
One additional features of �gure 2 needs to be mentioned. Time variations in

elements of �t are correlated (see, in particular, �2t and �4t or �2t and �7t). Thus
our setup, in which the matrix S is not necessarily diagonal, captures the idea that
changes in policy and private sector parameters are related.
In sum, in agreement with the DSGE evidence of Justiniano and Primiceri (2008)

and Canova and Ferroni (2012), time variations appear in the variance of the mon-
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Figure 3: Dynamics following a monetary policy shock, di¤erent dates.

etary policy shock and in the contemporaneous policy and non-policy coe¢ cients.

3.4 The transmission of monetary policy shocks

Next, we would like to see how the time variations we have described a¤ect the
transmission of monetary policy shocks. To control from the fact that �mpt is time-
varying, we normalize the impulse to be one at all t. Thus, the variations we describe
below are due to changes in the propagation but not in the size of the shocks. We
compute responses as the di¤erence between two conditional projections, one with
the structural shock normalized to one and one with the structural shock normalized
to zero. In both cases, the structural parameters are allowed to be random.
In theory, a surprise increase in interest rates, should make money growth, output

growth and in�ation fall, while unemployment should go up. Such a pattern is
present in the data in the early part of the sample, but disappears as time goes by.
As �gure 3 indicates, monetary policy shocks have the largest e¤ects in 1990; the
pattern is similar but weaker in 1975 and 1981. In 2005, the liquidity e¤ect has
disappeared (interest rate increases imply positive although insigni�cant responses
of the growth rate of money) while output and unemployment e¤ects are perverse
(output growth signi�cantly increase and unemployment signi�cantly fall). Note
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that di¤erences in the responses of the variables between, say, 1990 and 2005 are
a-posteriori signi�cant. Thus, it appears that one of the main mechanisms though
which of monetary policy a¤ects the real economy (see e.g. Gordon and Leeper,
1994) has considerably weakened over time. Perhaps, the informal in�ation targeting
practices that the Fed has follows in the 2000s are responsible for these changes.
Despite these noticeable variations, the proportion of the forecast error variance

of output, prices and unemployment due to policy shocks is consistently small. Mon-
etary policy shocks explain little of the forecast error variance of in�ation at all times
and about 10-15 percent of the variability of output growth and the unemployment
rate, with a maximum of 20 percent in the early 1980s. Thus, as in Uhlig (2005) or
Sims and Zha (2006), monetary policy has modest real e¤ects.
Our results are very much in line with those of Canova et al. (2008), even

though they use sign restrictions to extract structural shocks, and of Boivin and
Giannoni (2006), who use sub-sample analysis to make their points, and of Boivin
et al. (2010). They di¤er somewhat from those reported in Sims and Zha (2006)
primarily because they do not allow time variations in the instantaneous coe¢ cients.
They also di¤er from Fernández-Villaverde et al. (2010), who allow for stochastic
volatility and time variations only in the coe¢ cients of the policy rule.

3.5 Comparing the results to traditional models

This subsection compares our results with those obtained in a constant coe¢ cient
overidenti�ed structural model (henceforth, overidenti�ed SVAR) and with a TVC
model where the monetary shock is identi�ed with standard recursive restrictions.
Given that an overidenti�ed, non-recursive structural model is more complicated
than the alternatives, one would like to know whether the economic interpretation
would change if one would follow standard approaches.
To start with we compare the �t of various speci�cations using marginal likeli-

hood (ML) computed using an harmonic mean estimator. The recursive TVC-SVAR
has, perhaps unsurprisingly, the highest ML, (�299), followed by the overidenti�ed
system (�316). Thus the restrictions implied by the model are rejected. Finally,
the model with �xed coe¢ cients is clearly inferior to both, ML= �574.
Next, we examine the time variations present in the structural parameters �

in the recursive and non-recursive TVC model and compare them to the estimates
obtained in the overidenti�ed SVAR. Here, we report only the parameters of the
money demand equation which are common to the two time varying speci�cations.
The elasticity of money growth to interest rates has very di¤erent features. In

the model with �xed coe¢ cients is strongly positive, while in the two TVC speci�ca-
tions, it �uctuates around zero. Furthermore, the posterior 68 percent tunnel in the
two time varying speci�cations has quite di¤erent behavior and, in the last part of
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Figure 4: Coe¢ cients in the money demand equation, di¤erent systems

the sample, it is strongly negative with the non-recursive speci�cation and positive
with the recursive one. There are smaller di¤erences in the properties of the elas-
ticity of money growth demand to output. Nevertheless, �uctuations over time in
the posterior estimates obtained with the recursive system are smaller. In addition,
while in the recursive system the estimate �uctuates around zero, the mean value
is positive and large in the non-recursive one. Finally, there are also considerable
di¤erences both in the level and in the time variations of the elasticity of money
growth demand to in�ation: the overidentifed SVAR has a very negative and sig-
ni�cant elasticity; in the recursive system the tunnel starts quite negative but then
�uctuates around zero with some prevalence of negative values; in the non-recursive
system, instead, the tunnel is generally positive and much less �uctuating.
What do these di¤erences imply for the transmission of monetary policy shocks?

For illustration, we report in �gure 5, the responses of money growth to a unexpected
interest rate impulse at four dates (1975, 1981, 1990, 2005) in the three systems we
analyze. Three features are evident. First, in the overidenti�ed SVAR the liquidity
e¤ect is strong and money growth falls quite a lot when interest rates are surprisingly
increased. Second, when TVC are allowed for, the liquidity e¤ect is generally weaker.
Third, the size of the money growth responses is di¤erent in the recursive and in
the non-recursive system. In the former time variations are small and the e¤ect is
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Figure 5: Responses of money growth, di¤erent time periods.

signi�cant only in 1981 and 2005; in the latter time variations are larger and while
the response was strongly, persistently and signi�cantly negative in 1990, it turns
positive in 2005. Thus, inference concerning the relevance of the liquidity e¤ect of
an interest rate shock depends on the whether �xed or time varying coe¢ cients are
considered and on whether the system is just or overidenti�ed.

4 Conclusions

This paper proposes a uni�ed framework to estimate structural VARs. The method-
ology can handle time varying coe¢ cient or time invariant models, identi�ed with
recursive or non-recursive restrictions, and that could be just identi�ed or overiden-
ti�ed. Our algorithm adds a Metropolis step to a standard Gibbs sampling routine
but nest the model into a general non-linear state space. We do so, since this setup
allows us to impose general identi�cation restrictions. Thus, it greatly expands the
set of structural models we can deal with, within the same estimation framework.
We apply the methodology to the estimation of a monetary policy shock in a

non-recursive overidenti�ed model used with �xed coe¢ cients in the literature by
Robertson and Tallman (2001), Waggoner and Zha (2003). We show that there are
important time variations in the variance of the monetary policy shock and in the
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estimated non-zero contemporaneous relationships. These time variations translate
in important changes in the transmission of monetary policy shocks to the variables
in the economy. We also show, that one would have got a di¤erent characterization
of the liquidity e¤ect of an interest rate shock and of the properties of the money
demand function had one used an overidenti�ed but �xed coe¢ cient VAR or a time
varying coe¢ cient VAR identi�ed with recursive restrictions.
The range of potential applications of the methodology is large. For example, one

could use the same setup to identify �scal shocks or externally generated shocks in
models which theory tightly parametrizes. One could also use the same methodology
to identify shocks imposing magnitude restrictions on impulse responses or long run
restrictions, as in Rubio-Ramírez et al. (2010). The computational complexity is
important but it is not overwhelming and all the calculations can be easily performed
on a standard PC with su¢ cient RAM memory.
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