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Abstract

In the capital asset pricing model (CAPM), estimating beta con-
sistently is important to obtain a consistent estimate of the price of
risk. However, it is often found that the estimate of beta is sensitive
to the choice of portfolios used in the estimation. This paper provides
a new test to evaluate whether the choice of portfolios in typical as-
set price regressions is valid, in the sense that the portfolios satisfy
two conditions: (i) the way the portfolios are formed are exogenous;
and (ii) the choice of the group of assets to include in the portfolios
provides enough information to identify the parameters of interest.
Thus, checking the validity of the portfolio choice is an important
pre-requisite to ensure consistent estimates of the parameters of the
model.

We illustrate the performance of the test in small samples via
Monte Carlo simulations. The proposed test is also applicable to group
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and pseudo panel data models.
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1 Introduction

The empirical analysis of the capital asset pricing model (CAPM) has been a
priority in finance. Fama and French (1992) proposed a two-step regression
methodology to evaluate the CAPM model that is still widely used in finance.
The procedure consists in grouping assets into portfolios, calculating their
return above and beyond the risk-free return, and then regressing average ex-
cess portfolio returns on a series of factors. The model predicts, among other
things, that the factors should be significant and allows to make inference
on an important quantity of interest in empirical finance, the price of risk.
The Fama and French (1992) regression approach goes beyond finance: for
example, the carry-trade literature (e.g. Verdelhan, 2013) is an application
of Fama-French regressions to exchange rates.

Portfolios are typically used to reduce noise in the estimated regressions.
However, empirically, results turn out to be very sensitive to the portfolio
choice (Kandel and Stambaugh, 1995); that is, it is possible that the empirical
results are driven by the way the portfolios are chosen, and result in an
especially poor or especially good performance of the theoretical model to be
tested. Notwithstanding the importance of the issue in practice, no procedure
is currently available to evaluate the appropriateness of the portfolio choice.1

In this paper, we propose a new test to evaluate whether the choice of the
portfolios are appropriate. For example, our proposed test can be used to
determine whether portfolios should be sorted based on industry or size to
identify beta and thus the price of risk.

We propose a new test to evaluate the validity and relevance of factors
in these regressions. The test that we propose evaluates whether the port-
folio chosen by the researcher satisfies two conditions. The first condition is
that it is exogenous. Exogeneity requires that the way portfolios are formed
should be uncorrelated with idiosyncratic shocks to individual assets. In
other words, any noise at the individual asset level will vanish at the port-
folio level. If this condition is not met, there will be systematic biases when
parameters are estimated from portfolio regressions. Thus, lack of exogeneity
leads to inconsistent parameter estimates and invalidates tests of significance.
The second condition is that the choice of how to group assets into portfo-
lios is valid so that parameters of asset pricing models are strongly identified.

1Cochrane (2005, p. 218) suggests to evaluate the invariance of the empirical results to
the portfolio choice. However, if the empirical results turn out to depend on the portfolio
choice, this approach does not shed light on which ones the researcher should trust.
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Even when the exogeneity condition is satisfied, if the identification condition
is not satisfied, parameters cannot be consistently estimated from portfolio
regressions. It is only when both conditions are met that the parameter of
interest (the effect that the factor has on the excess return) can be identified
and valid inference on it as well as on the price of risk can be made. Our
proposed test is a joint test for exogeneity and strong identification. When
both conditions are met, the parameter of interest (the effect that the factor
has on the excess return, that is the “beta” of the portfolio) can be identified.

We consider a framework in which the number of individual assets and
the number of time periods are both large, a typical situation in the empirical
CAPM literature. Even when the number of portfolios is small, the large time
series dimension implies that the number of portfolio-time dummy variables
is also large. Our analysis starts from the observation that the Fama-French
regression estimator can be viewed as a two-stage least squares estimator in
which these portfolio-time dummy variables are instruments, and are many.
Thus, our methodology involves assessing whether the parameters are iden-
tifiable in an IV regression with many instruments. Because the number
of instruments is large (Kunitomo, 1980; Morimune, 1983; Bekker, 1994),
the two-stage least squares (2SLS) estimator is inconsistent but the jack-
nife instrumental variables estimator (JIVE) is consistent (Chao, Swanson,
Hausman and Newey, 2012). Koopmans and Hood (1953) establish the condi-
tion for identifiability for instrumental variables estimators. Their condition
involves evaluating the rank of the population coefficient matrix from re-
gressing endogenous variables on exogenous variables. Because this matrix
is infinite-dimensional, we transform this infinite dimensional problem into a
finite dimensional one. We show that testing the identifiability of parameters
of interest boils down to testing the rank of a finite-dimensional matrix in
our framework. In a recent paper, Kleibergen and Paap (2006) propose a
test of matrix rank using the singular value decomposition. They assume
that the matrix is non-symmetric and thus their test cannot be used for our
purpose (Kleibergen and Paap, 2006, p.103). Donald, Fortuna and Pipiras
(2007) develop rank tests for symmetric matrices. Our implementation of
rank testing is based on one of their tests.

Our proposed test is related to the existing tests of Anatolyev and Gospodi-
nov (2011) and Chao, Hausman, Newey, Swanson and Woutersen (2014).
Anatolyev and Gospodinov (2011) develop the Anderson-Rubin and the J
overidentifying restriction tests when there are many instruments. Chao,
Hausman, Newey, Swanson and Woutersen (2014) develop a test of overi-
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dentifying restrictions based on a jacknife version of Sargan’s test statistic.
These two tests are designed for testing instruments. Using the many instru-
ment framework of Chao et al. (2012), we develop a test for the rank of a
finite-dimensional matrix and we test the identification condition as well as
the exogeneity condition.

While we motivate this problem using the Fama-French model, our test
is applicable to a wide class of problems in which group averages (Angrist,
1988) and pseudo panels (Deaton, 1985) are used where group dummies are
instruments that consist of ones and zeros.

The rest of the paper is organized as follows. Section 2 motivates our
problem using the Fama-French regression. Section 3 presents assumptions
and theoretical results. Section 4 shows Monte Carlo simulation results.
Section 5 concludes the paper.

2 Motivation

The CAPM model suggests a particular relationship between the return of
asset “i” at time “t” (Ri,t) and the excess market return at time ”t” (RM,t−
Rf,t):

2

Ri,t = Rf,t + [RM,t −Rf,t] βi + εi,t,

where i = 1, ..., N , t = 1, ..., T , N is the total number of assets and T is
the total sample size. Note that the excess market return is the difference
between the market return, RM,t, and the risk-free rate, Rf,t. Thus, the ex-
cess market return is a common factor that explains the variability of the
individual asset returns. The excess market return may not be the only fac-
tor. According to the more general intertemporal capital asset pricing model
(ICAPM), any state variable that predicts future investment opportunities
serves as a factor. These additional factors can be selected via: (a) economic
theory;3 (b) statistical principal components; or (c) firm characteristics (e.g.
size, value, momentum). Thus, the individual asset regression becomes:

Ri,t = Rf,t + β′ift + εi,t, (1)

where ft is a (K × 1) vector of factors and βi is a vector of (K × 1) individual
assets’ betas. However, estimates of beta for individual assets are very impre-

2See Fama and French (2004, p. 32), for example.
3For example, Lettau and Ludvigson (2001) suggest that the consumption -to -wealth

-to -income ratio (“cay”) is a common factor.
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cise, creating a measurement error problem. To address this issue, researchers
estimate eq. (1) using portfolios returns, i.e. Rp,t ≡

∑N
i=1 ωi,tRi,t, where ωi,t

are weights (possibly time-varying). According to Fama and French (2004),
estimates of βp for diversified portfolios are more precise than estimates of
βi for individual assets, reducing the measurement error problem. Creating
portfolios, however, reduces the range of βi that can be estimated. Thus,
researchers first sort securities based on their value of β and then form port-
folios using quantiles of the distribution of β: the first portfolio is constructed
using the assets with the lowest βi; the second portfolio uses the assets with
the smallest among the remaining βi and so forth, until the last portfolio,
which contains assets that have the highest βi.

In the rest of the paper, we assume that βi is the same for every return
belonging to that portfolio: βi = βg ∀i ∈ Pg, where Pg is the set of i’s that
belong to portfolio g; in this case, ωi is a dummy variable that equals one
if asset i belongs to portfolio g. Thus, eq. (1) implies

∑N
i=1,i∈Pg

ωiRi,t =

Rf,t + f ′t

(∑N
i=1,i∈Pg

ωi,tβi

)
+
∑N

i=1,i∈Pg
ωiεi,t, that is:

Rp,t = Rf,t + β′gft + εp,t (2)

where βg is the beta of the portfolio:
∑N

i=1,i∈Pg
ωiβi = βg, Rp,t =

∑N
i=1,i∈Pg

ωiRi,t,

εp,t =
∑N

i=1,i∈Pg
ωiεi,t.

In this paper we are interested in testing whether the choice of which asset
is included in the portfolio is valid, in the sense that the factors are exogenous
and the grouping into portfolio provides relevant information to identify the
parameter βp. Note that the exogeneity of the factors is a necessary condition
for the consistency of βp in eq. (2), and it corresponds to the exogeneity of
the factors in the individual asset return model, eq. (1), in the sense that
if the factors are exogenous in the individual assets’ return regressions then
they are exogenous in the portfolio regressions.

3 Asymptotic Theory

Suppose that in portfolio g the i-th individual asset excess return (rg,i,t =
Rg,i,t −Rf,t) satisfies

rg,i,t = β′gft + εg,i,t, (3)

at time t, for g = 1, 2, ..., G, i = 1, ..., n and t = 1, 2, ..., T . For example, in
the Fama-French three factor model, the (K × 1) vector of observed factors,
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ft, consists of (i) the excess return on a broad market portfolio, (ii) the
difference between the return on a portfolio of small stocks and (iii) the
return on a portfolio of large stocks, and the difference between the return
on a portfolio of high-book-to-market stocks and the return on a portfolio
of low-book-to-market equity (BE/ME) stocks in addition to the intercept
term. For notational simplicity, we assume that the number of assets is the
same in each portfolio at every time period and is denoted by n. 4

We will show that an estimator of β in equation (3) can be interpreted as
an instrumental variables estimator. By stacking (3) for g = 1, 2, ..., G, we
can write (3) as: 

r1,i,t

r2,i,t
...

rG,i,t

 =


β′1
β′2
...
βG

 ft +


ε1,i,t

ε2,i,t
...

εG,i,t

 , (4)

for i = 1, ..., n and t = 1, ..., T .
The model can be more compactly written as

yi,t = β′ft + ui,t, (5)

xi,t = ft + vx,i,t, (6)

for i = 1, 2, ..., n and t = 1, 2, ..., T , where yi,t = [y1,i,t · · · yG,i,t]′, β =
[β1 β2 · · · βG] is a (K × G) matrix of parameters, ui,t = [ε1,i,t · · · εG,i,t]′,
and vx,i,t is a idiosyncratic measurement error (which is zero if the factor is
directly observed). Here we assume that the number of signals xi,t equals n.
In case there are G multiple of these n signals, one can think of xi,t as their

average, i.e., xi,t = (1/G)
∑G

g=1 xg,i,t where xg,i,t is a portfolio g version of
xi,t.

Taking time averages of (5) and (6) gives:

ȳg,t = β′gft + ūg,t, g = 1, ..., G, (7)

x̄t = ft + v̄x,t, (8)

where ȳg,t = (1/n)
∑n

i=1 yg,i,t, x̄t = (1/n)
∑n

i=1 xi,t, ūg,t = (1/n)
∑n

i=1 εi,g,t,
and v̄t = (1/n)

∑n
i=1 vx,i,t. If ft is not observable, ft in equation (7) is replaced

by x̄t. If ft is observable, x̄t is numerically identical to ft.

4In practice, this “balanced panel” assumption may not be satisfied. We can allow for
unbalanced panels as long as the way unbalanced panel data are unbalanced is orthogonal
to uj .
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It can be shown that the least squares estimator from regressing ȳg,t on
x̄t, (

T∑
t=1

x̄tx̄
′
t

)−1 T∑
t=1

x̄tȳ
′
g,t (9)

is an instrumental variables estimator of βg. Define nT×K matrix X, nT×G
matrix Y , and nT × T matrix Z by

X =



x′1,1
x′1,2

...
x′1,T
x′2,1
x′2,2

...
x′2,T

...
x′n,1
x′n,2

...
x′n,T



, Y =



y1,1,1 y2,1,1 · · · yG,1,1
y1,1,2 y2,1,2 · · · yG,1,2

...
...

. . .
...

y1,1,T y2,1,T · · · yG,1,T
y1,2,1 y2,2,1 · · · yG,2,1
y1,2,2 y2,2,2 · · · yG,2,2

...
...

. . .
...

y1,2,T y2,2,T · · · yG,2,T
...

...
...

...
y1,n,1 y2,n,1 · · · yG,n,1
y1,n,2 y2,n,2 · · · yG,n,2

...
...

. . .
...

y1,n,T y2,n,T · · · yG,n,T



, (10)

and Z = IT ⊗ `n, respectively, where `n is the (n × 1) vector of ones. Then
the time average regression estimator is a 2SLS estimator of β with Z as the
instruments, i.e.,

β̂2SLS = [β̂1,2SLS β̂2,2SLS · · · β̂G,2SLS]

= [X ′Z(Z ′Z)−1Z ′X]−1X ′Z(Z ′Z)−1Z ′Y

=

[
n∑

i,j=1

T∑
s,t=1

xi,sPi,j,s,tx
′
j,t

]−1 n∑
i,j=1

T∑
s,t=1

xi,sPi,j,s,ty
′
j,t, (11)

where x′i,s is the (i − 1)T + s-th row of X, y′j,t is the (j − 1)T + t-th row of
Y , and Pi,j,s,t is the ((i− 1)T + s, (j − 1)T + t)-th element of the projection
matrix P = Z(Z ′Z)−1Z ′. Because the number of instruments equals the
number of time periods, which is large relative to the total sample size in

8



typical empirical applications, the two stage least squares estimator of β =
[β1 β2 · · · βG] is inconsistent (Bekker, 1994). In addition, volatilities may
vary across different asset returns and portfolios. Thus, we consider a version
of the jackknife instrumental variables (JIVE) estimator of Chao et al. (2012),
which allows for heteroskedasticity as well as many weak instruments:

β̂JIV E =
[
β̂JIV E,1 β̂JIV E,2 · · · β̂JIV E,G

]
=

[∑
i 6=j

T∑
s,t=1

xi,sPi,j,s,tx
′
j,t

]−1∑
i 6=j

T∑
s,t=1

xi,sPi,j,s,ty
′
j,t, (12)

where
∑

i 6=j denotes
∑n

i=1

∑n
j=1,i 6=j in the rest of the paper.

To understand the identifiability of β, we need to write the model in reduced
form:

Yi,t ≡
[
xi,t
yi,t

]
=

[
Πx,T

Πy,T

]
zi,t +

[
vx,i,t
vy,i,t

]
=

[
Πx,T

β′Πx,T

]
zi,t +

[
vx,i,t
vy,i,t

]
= ΠT zi,t + vi,t. (13)

where z′i,t is the j = (i − 1)T + t-th row of Z, Πx,T = f ′ = [f1 f2 · · · fT ]
is (K × T ), and Πy,T = β′Πx,T is (G× T ). 5 We now state Koopmans and
Hood’s (1953) necessary and sufficient condition for identifiability of β:

Proposition 1 (Koopmans-Hood Rank Condition). Suppose that (4) and (13)
hold. For given N and T , β is identified if and only if (K + G) × T matrix
ΠT has rank K, where K is the number of parameters in β in equation (13).

Remarks. When instruments are not exogenous, Πy,T cannot be written as a
linear combination of the columns of Πx,T and thus the rank will be greater
than K. The rank of ΠT will be less than K when the instruments are not
relevant. The first case is a situation where the model is misspecified because
Πy,T is not a linear combination of Πx,T . As we will show in the Monte Carlo
section, for example this may also happen when the researcher forgets to
include a group-specific constant in the return regression. The second case is

5To obtain the reduced form (13), we start with (6): xi,t = ft+vx,i,t or ft = xi,t−vx,i,t;
substituting this in eq. (5), we have: yi,t = β′(xi,t − vx,i,t) + ui,t; rewriting eq. (6) as
xi,t = Πx,T zi,t+vx,i,t and substituting it in the preceeding equation for yi,t: yi,t = β′Πx,T .
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a situation of no identification because some of the factors are spurious and
the rank of Πx,T is not full. For example, this is the case when ft = [f1t, f2t]

′

and f2t = 0 ∀t or when the factors are linearly dependent.

We impose the following conditions:

Assumption.

(a) Z = IT ⊗ `n.

(b) Both n and T diverge to infinity while G is fixed.

(c) ‖(1/T )
∑T

t=1 ftf
′
t‖ ≤ C and λmin((1/T )

∑T
t=1 ftf

′
t) ≥ 1/C almost surely.

suptE‖ft‖8 ≤ C.

(d) Conditional on Z, {vi,t} are cross-sectionally independent and form a
Martingale difference sequence in that E(vi,svj,t|Z) = 0 for all i, j, s, t
such that i 6= j and E(vit|Fi,t−1, Z) = 0 where Fi,t−1 is the sigma field
generated by fs+1 and vj,s for all j and all s < t, and supi,tE(‖vi,t‖8|Z) ≤
C.

(e)

Σ = lim
n→∞

Cov

(
1√
nT

∑
i 6=j

T∑
s,t=1

vech(Yi,sPi,j,s,tY
′
j,t)

)
(14)

is positive definite where Pi,j,s,t is the ((i − 1)T + s, (j − 1)T + t)-th
element of the projection matrix P = Z(Z ′Z)−1Z ′.

Remarks. An analog of assumption 1 of Chao et al. (2011) is satisfied
under our assumptions (a) and (b). In their notation, we assume that
Υi = ΠZi, Sn =

√
nTI(G+K)×(G+K), rn = nT , K = T . Because zi,t con-

sists of zeros and ones and the elements of zi,t sum to one and Z has rank
T , Pi,i,s,s = 1/n. Thus, their assumption that Pii < C < 1 is sat-

isfied. Assumption (b) implies ‖
∑n

i=1

∑T
t=1 ΠT zi,tz

′
i,tΠ

′
T/(nT )‖ ≤ C and

λmin(
∑n

i=1

∑T
t=1 ΠT zi,tz

′
i,tΠ

′
T/(nT )) ≥ 1/C almost surely.

Their assumption 2 is also satisfied under our assumptions (b) and (c).
Their assumption 3 is satisfied under our assumption (d). Their assumption
4 is trivially satisfied because we assume that the reduced form is linear in
the instruments. Their assumption 5 is imposed in our assumption (e).
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Given our proposition, testing identifiability of β boils down to testing
whether or not the rank of ΠT is K. Rather than test the rank of ΠT whose
dimension (K × T ) diverges to infinity, we will test the rank of

H = lim
n,T→∞

1

nT

∑
i 6=j

T∑
s,t=1

ΠT zi,sz
′
j,tΠ

′
T , (15)

whose dimension ((G+K) × (G+K)) is fixed relative to the sample size.
Let

Ĥ =
1

nT

∑
i 6=j

T∑
s,t=1

(Yi,sPi,j,s,tY
′
j,t); (16)

then, H is effectively the probability limit of Ĥ, and its rank is the same as
the rank of the limit of ΠT .

Theorem 1 (Asymptotic Distribution of Concentration Matrix).

√
T

{
1

nT

∑
i 6=j

T∑
s,t=1

[
vech(Yi,sPi,j,s,tY

′
j,t)− vech(H)

]} d→ N(0,Σ), (17)

where Σ is given in assumption (e).

Remarks. Donald, Fortuna and Pipiras (2007) show that, for the asymptotic
covariance matrix of a symmetric matrix estimator to be positive definite,
the symmetric matrix estimator must be indefinite (Proposition 2.1 of Don-
ald, Fortuna and Pipiras, 2007, p.1219). To be precise, their proof requires
that the symmetric matrix estimator needs to be indefinite with positive
probability (it does not have to be indefinite with probability one as their
statement might imply). We show that this condition is indeed satisfied in
our problem.

Because
1

nT

∑
i 6=j

T∑
s,t=1

Yi,sPi,j,s,tY
′
j,t

p→ H, (18)

andH is positive semi-definite with rankK, the largest eigenvalue of
∑

i 6=j YiPijY
′
j

is positive with probability approaching one under the null hypothesis that
β is identifiable.
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For (G+K)× 1 vector a,

a′
1

nT

∑
i 6=j

T∑
s,t=1

Yi,sPi,j,s,tY
′
j,ta =

1

nT

∑
i 6=j

T∑
s,t=1

b′i,sbj,t

=
1

nT

(
n∑
i=1

T∑
s=1

b′i,s

n∑
j=1

T∑
t=1

bj,t −
n∑
i=1

b′ibi

)

=
1

T

[
(n− 1)b̄′b̄−

G+K∑
k=1

V̂ ar(bk)

]
(19)

where bi,t = (Z ′Z)−
1
2 zi,tY

′
i,ta, b̄ = (1/n)

∑n
i=1

∑T
t=1 bi,t, and V̂ ar(bk) is the

sample variance of the k-th element of
∑T

t=1 bi,t. For given n and T , the sum

of the variances of
∑T

t=1 bi,t can be larger than nb̄′b̄ with positive probability,
provided that the support of vi is large enough, Thus, the smallest eigenvalue
is negative with positive probability. Therefore, the necessary condition of
Donald et al. (2007) is satisfied provided that the support of vi is large enough
given Z.

Theorem 1 provides a basis for testing the rank of H. Therefore we will
extend Donald et al.’s (2007) approach to symmetric matrices. Following
Kleibergen and Paap (2006) we may also normalize Ĥ and consider CĤC ′

where C is a (G+K)× (G+K) non-singular matrix. For example, C may
be the square root of the covariance matrix of the endogenous variables.

Corollary 1 (Asymptotic Distribution of Scaled Concentration Matrix) In addition
to Assumptions (a)–(e), suppose that

(f) D+
G+K(C ⊗ C)D+

G+K has rank (G+K)(G+K + 1)/2.

Then √
Tvech(CĤC ′ − CHC ′) d→ N(0,Ω), (20)

where

Ω = D+
G+K(C⊗C)D+

G+KΣD+′
G+K(C ′⊗C ′)D+′

G+K , D
+
G+K = (D′G+KDG+K)−1D′G+K

and DG+K is the (G + K)2 × (G + K)(G + K + 1)/2 duplication matrix
(Magnus and Neudecker, 1999, p.49).

Given the asymptotic normality of Ĥ, we employ Donald et al.’s (2007)
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implementation of Kleibergen and Paap’s (2006) singular value decomposi-
tion (SVD) rank test. For completeness, we provide the definition of the test
statistic.

To test that the instruments are orthogonal, we consider the null hy-
pothesis that Ĥ is rank K against the alternative hypothesis that Ĥ is rank
(K + 1). To test that the instruments are not relevant, we test the null hy-

pothesis that Ĥ is rank (K − 1) against the alternative hypothesis that Ĥ
is rank K. Let K0 be the rank under the null hypothesis. That is, K0 = K
under the first null hypothesis and K0 = K − 1 under the second null hy-
pothesis.

For the notational simplicity, we assume that Ĥ is used. Because Ĥ is
symmetric, its singular value decomposition is identical to the Schur decom-
position of Ĥ:

Ĥ = UDU ′ =

[
U11 U12

U21 U22

] [
D11 0
0 D22

] [
U ′11 U ′21

U ′12 U ′22

]
, (21)

where U is a unitary matrix, D is a diagonal matrix whose diagonal ele-
ments are the eigenvalues of Ĥ in non-increasing order, U11 and D11 are
(K0 ×K0), U12 and U ′21 are (K0 × (K +G−K0)), and U22 and D22 are
((K +G−K0)× (K +G−K0)). Define

A⊥ =

[
U12

U22

]
U22(U22U

′
22)−

1
2

=

[
U12

U22

]
, (22)

B⊥ = A′⊥, (23)

Λ̂ = (U22U
′
22)−

1
2U22D22U

′
22(U22U

′
22)−

1
2 , (24)

Then under the null hypothesis that the rank of H is K0, it follows from
Proposition 4.1 of Donald et al. (2007) that

T · vech(Λ̂)′Ω̂−1vech(Λ̂)
d→ χ2

(K+G−K0)(K+G−K0+1)/2, (25)

where

Ω̂ = D+
K+G−K0

(B⊥ ⊗ A′⊥)DG+K−1Σ̂D′G+K−K0
(B′⊥ ⊗ A⊥)D+′

K+G−K0
,

13



D+
K+G−K0

= (D′K+G−K0
DK+G−K0)

−1D′K+G−K0
and DK+G−K0 is the

((K +G−K0)2 × (K +G−K0)(K +G−K0 + 1)/2) duplication matrix.

We suggest the following testing procedure:

Step 1. Test if K0 = K. If this null is rejected, the model is misspecified. If
this null is not rejected, proceed to step 2.

Step 2. Test if K0 = K − 1. If this null hypothesis is rejected, the model is
correctly specified and the parameter is identified (thus we fail to reject the
null hypothesis that the model is correct and the parameter is identified).
If the second smallest eigenvalue is also zero, then the parameter is not
identified.

To make our testing procedure operational, one needs a consistent esti-
mator of Σ, Σ̂. We need to find the asymptotic covariance matrix of the vech
of

1

nT

∑
i 6=j

T∑
t=1

Yi,tPi,j,t,tY
′
j,t. (26)

For the factor model, we propose the following estimator of the asymptotic
covariance matrix:

Σ̂ =
1

n2T

T∑
t=1

[∑
i<j

vech(Yi,tYj,t + Yj,tY
′
i,t)vech(Yi,tYj,t + Yj,tY

′
i,t)
′

−µ̂tµ̂′t] , (27)

where µ̂t = (1/n)
∑

i 6=j(vech(Yi,tYj,t + Yj,tYi,t)).

Proposition 2 (Consistency of the Asymptotic Covariance Matrix Estimator) Sup-
pose that Assumptions (a)–(e) hold. Then

Σ̂
p→ Σ. (28)

4 Monte Carlo Experiments

We consider data generating processes (DGPs) calibrated on an asset pricing
model with parameters estimated from U.S. data. We consider the traditional
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CAPM model with parameters calibrated using gross returns on the three-
month Treasury-bill and the 25 Fama and French size and book-to-market
portfolios from 1952:2 to 2000:4, for a total of 195 time series observations.
The data are the same as in Gospodinov et al. (2013).

We consider three data generating processes (DGPs). In the first DGP,
the parameter β is the following CAPM model is identified:

rigt = βft + σεigt, (29)

figt = ft + σηigt, (30)

ft = µf + σfζt, (31)

for i = 1, ..., n, g = 1, ..., G, t = 1, ..., T , where G ∈ {1, 5} is the number of
Fama-French portfolios, n ∈ {100, 200} is the number of assets in each group,
and T ∈ {100, 200} is the number of time periods. Because the identifiability
of β does not depend on its value, the value of β is set to 1 without of
generality. The scalar common factor ft is the simulated market return at
time t (generated from a normal with mean zero and variance σ2

f , where σ2
f

is set to the variance of the market return in the data, σ2
f = 0.0066).6 The

calibrated value of σ is based on Ang, Liu and Schwarz (2008): σ2 = 0.1225.
εigt, ηigt and ζt are independent iid standard normal random variables.

To see why β is identifiable in this model rewrite the model using the
notation in the previous section as:

x = (`G ⊗ f)⊗ `Ngt + vx

= ZΠx + vx, (32)

y = (`G ⊗ f)⊗ `Ngtβ + ε

= ZΠxβ + vy, (33)

where Z = IGT ⊗ `Ngt , Πx = `G ⊗ f , Πy = Πxβ, vx = ση, vy = ε − vxβ.
Then note that

Π = [Πx Πy] = [`G ⊗ f (`G ⊗ f)β] (34)

actually has rank 1 with probability one. Thus, β is identifiable with proba-
bility one in this model.

6The mean of the market return for the sample period we consider is 0.0191 and it is
indeed close to zero, so we set µf = 0.
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We calculate the test statistic for testing that Π has rank 0 (under-
identification) and the test statistic for testing that Π has rank 1 (correct
specification). Then we calculate frequencies in which each of the two null
hypotheses is rejected at the 5% significance level over 1,000 Monte Carlo
simulations. Table 1 shows that the rank 0 test always rejects the null of
under-identification while the rank 1 tends to have good size across different
sample sizes and portfolio sizes.

Next, we consider an alternative hypothesis under which the model is
misspecified. Specifically, we replace equation (29) by

rigt = ag + βft + σεigt, (35)

where ag is a portfolio-specific mean that is 0.025 times the sample means of
the portfolio returns:

[1.0131 1.0394; 1.0394 1.0460 1.0492 1.0286 1.0369 1.0423 1.0441 1.0474]′.

The tests always have power one when the sample mean is used as ag. To
make the Monte Carlo experiment more meaningful, we use 0.025 times the
sample portfolio means. To see the effect of G, n and T on the power of
the tests, we multiply the sample mean by 0.05. The portfolio specific mean
could be interpreted as measurement error that does not disappear asymp-
totically when constructing portfolio averages. Thus, this is a case in which
the researcher has chosen a characteristic to sort portfolios that results in
large measurement errors and renders the parameter estimate inconsistent.
As a result the population first-stage regression coefficient matrix takes the
form of

Π = [Πx Πy] = [`G ⊗ f (`G ⊗ f)β + a⊗ `T ] (36)

The rank of this matrix is 2 with probability one, meaning that the model is
misspecified.

Table 2 shows the empirical rejection frequencies when testing the null
hypothesis that Π has rank 0 and when testing the null hypothesis that
Π has rank 1. Again the rank 0 test always rejects the null hypothesis of
under-identification. The rank 1 test rejects the null hypothesis of correct
specification with probability much higher than the nominal size. The rejec-
tion frequency of the rank 1 test is increasing in sample sizes and approaches
one as expected.
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Finally, we consider a DGP in which there is no factor structure:

rigt = σεigt,

figt = σηigt,

Using the notation in the previous section, the model can be written as

x = ZΠx + vx,

y = xβ + ε = ZΠxβ︸︷︷︸
=Πy

+ vy,

where Πx = 0. Because rank(ΠT ) =rank

([
0
0

])
= 0, the parameter β is

not identified. Because the rank 0 test is designed to test the null of under-
identification, not rejecting this null means that the parameter is likely to
be under-identified. Table 3 shows that the rank 0 test is undersized and
suggests that one would conclude that the parameter is not identified. It is
interesting to note that the rejection frequencies of the rank 1 test are very
small in this case. This is because the rank 1 test is designed to test the null
hypothesis that the rank is one against the alternative hypothesis that the
rank is higher than one.

5 Conclusion

This paper proposed a new test to evaluate the portfolio choice in widely-
used finance regressions based on portfolio returns. The new test allows
researchers to tackle the empirical problem that empirical results are sensitive
to the portfolio choice. This paper provides techniques to evaluate whether
the portfolio choice is appropriate by testing the validity of the choice of how
to group assets into portfolios and the exogeneity of the portfolio choice. Only
under these condition the parameters of interest(such as β and the price of
risk of a portfolio) can be correctly estimated. Monte Carlo simulations based
on the CAPM model demonstrate the good size and power properties of our
test.

While we motivate this problem from the portfolio choice perspective,
our test can be used to test for identification in group and pseudo and panel
data models as well.
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Appendix

First, we present a lemma that is an extension of Lemma A2 of Chao et al.
(2012) to our dependence structure of the error terms.

Lemma. Suppose that Assumptions (a)-(e) hold. Then

Sn,T =
1√
nT

∑
i 6=j

T∑
s,t=1

vech(ΠT zi,sPi,j,s,tvj,t + vi,sPi,j,s,tz
′
j,tΠ

′
T + vi,sPi,j,s,tv

′
j,t)

d→ N(0,Σ). (37)

Proof of Lemma. For notational simplicity, and suppose that ft and vi,t are
scalar and that we focus on the (1, 1) element of Sn,T . The desired result
follows from applying the Cramér-Wold device to this scalar result.

Because P = IT ⊗ (1/n)`n`
′
n is block diagonal and the (1, 1) element of

ΠT zi,s is fs, we can write the (1,1) element of Sn,T as

Sn,T =
1

n
√
nT

∑
i 6=j

T∑
t=1

(ftvi,t + ftvj,t + vi,tvj,t), (38)

with some notational abuse. Let

st =
1

n
√
nT

∑
i 6=j

(ftvi,t + ftvj,t + vi,tvj,t). (39)

Then we can rewrite Sn,T as

Sn,T =
T∑
t=1

st. (40)

Let Ft denote the sigma field generated by {fs+1, v1,s, v2,s, . . . , vn,s}ts=1.
Because vi,s and vj,t are independent for all i, j, s, t such that i 6= j or s 6= t,
{st} is a martingale difference sequence relative to {Ft}. If we show

T∑
t=1

E
[
s2
t |Ft−1, Z

]
→ Σ a.s., (41)

T∑
t=1

E[s2
t I(|st| ≥ ε)|Z] → 0 a.s., (42)
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for each ε > 0, the martingale central limit theorem (Theorem 35.12 of
Billinsgley, 1995, p.476) gives

P (Sn,T ≤ x|Z) → 1√
Σ

Φ

(
x√
Σ

)
a.s. (43)

for all x ∈ < conditional on Z. Note that, for ε > 0 :

sup
n,T

E[P (Sn,T ≤ x|Z)1+ε] <∞ (44)

because probabilities are bounded between zero and one. Given that (44)
holds, it follows from the dominated convergence theorem (Corollary in
Billingsley, 1995, p.338) and (43) that7

P (Sn,T ≤ x) → 1√
Σ

Φ

(
x√
Σ

)
, (45)

completing the proof for the case in which vi,t is scalar.

It remains to show (41) and (42). Note that

E
(
s2
t |Z
)

=
1

n3T

∑
i 6=j

∑
k 6=`

[E(f 2
t vi,tvk,t|Z) + E(f 2

t vi,tv`,t|Z) + E(f 2
t vj,tvk,t|Z) + E(f 2

t vj,tv`,t|Z)

+E(vi,tvj,tvk,tv`,t|Z) + 2E(f 2
t vi,tvj,t) + 2E(ftv

2
i,tvj,t|Z) + 2E(ftvi,tv

2
j,t|Z)]

=
4(n− 1)2

n3T

n∑
i=1

E(f 2
t v

2
i,t|Z) +

1

n3T

∑
i 6=j

∑
k 6=`

E(vi,tvj,tvk,tv`,t|Z)]. (46)

The first term on the right hand side of (46) can be written as

4(n− 1)2

n3T

n∑
i=1

E(f 2
t v

2
i,t|Z) =

4(n− 1)2

n3T
σ2
f

n∑
i=1

σ2
i,t. (47)

The summation over i 6= j and k 6= ` in the second term on the right hand

7Note that the unconditional probability is the expected value of the conditional prob-
ability.
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side of (46) can be split into summations over three sets of i, j, k, `:

I0 = {(i, j, k, `) : i, j, k, ` are distint from each other}, (48)

I1 = {(i, j, k, `) : only one pair are identical among i 6= j, k 6= `,

i.e., (i = k and j 6= `) or (i 6= k and j = `) or (i = ` and j 6= k) or (i 6= ` and j = k)},
(49)

I2 = {(i, j, k, `) : two pairs are identical among i 6= j, k 6= `,

i.e., (i = k and j = `) or (i = ` and j = k)}. (50)

The expectations in the second term on the right hand side of (46) are zero
when i, j, k, ` are in I0 and I1 and thus can be written as

1

n3T

∑
i 6=j

∑
k 6=`

E(vi,tvj,tvk,tv`,t|Z) =
1

n3T

∑
i,j,k,`∈I2

E(vi,tvj,tvk,tv`,t|Z)

=
2

n3T

∑
i 6=j

σ2
i,tσ

2
j,t (51)

where σ2
i,t = E(v2

i,t|Z). Because st is a martingale difference sequence relative
to Ft conditional on Z, it follows from (46), (47), (51) and Assumption (e)
that

T∑
t=1

E
(
s2
t |Ft, Z

)
=

4σ2
f (n− 1)2

n3T

T∑
t=1

n∑
i=1

σ2
i,t +

2

n3T

∑
i 6=j

T∑
t=1

σ2
i,tσ

2
j,t

=
4σ2

f

nT

T∑
t=1

n∑
i=1

σ2
i,t +O(n−1)

→ Σ a.s. (52)

Thus the law of iterated expectations completes the proof of (41).
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To prove (42), write
∑T

t=1E(s4
t |Z) as

T∑
t=1

E(s4
t |Z) =

1

n2T 2

n∑
j1,j2,j3,j4=1

E(f 4
t vj1vj2vj3vj4)

+
4

n3T 2

∑
j1,j2,j3,j4,j5,j4 6=j5

E(f 3
t vj1vj2vj3vj4vj5)

+
6

n4T 2

∑
j1,j2,j3,j4,j5,j6,j3 6=j4,j5 6=j6

E(f 2
t vj1vj2vj3vj4vj5vj6)

+
4

n5T 2

∑
j1,j2,j3,j4,j5,j6,j7,j2 6=j3,j4 6=j5,j6 6=j7

E(ftvj1vj2vj3vj4vj5vj6vj7)

+
4

n6T 2

∑
j1 6=j2,j3 6=j4,j5 6=j6,j7 6=j8

E(vj1vj2vj3vj4vj5vj6vj7vj8)

= E1 + E2 + E3 + E4 + E5. (53)

It follows from the assumption of mutual independence that

E1 = O
( n

n2T 2

)
+O

(
n2

n2T 2

)
, (54)

E2 = O

(
n2

n3T 2

)
, (55)

E3 = O

(
n2

n4T 2

)
+O

(
n3

n4T 2

)
, (56)

E4 = O

(
n2

n5T 2

)
+O

(
n3

n5T 2

)
, (57)

E5 = O

(
n2

n6T 2

)
+O

(
n3

n6T 2

)
+O

(
n4

n6T 2

)
, (58)

almost surely. Thus,
T∑
t=1

E(s4
t |Z) = O(T−1) (59)

almost surely from which (42) follows.

Proof of Proposition 1. Suppose that the rank of ΠT is K. Pre-multiplying
each side of the reduced-form equation (13) by G× (G+K) matrix c[−β′ IG]
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yields
c(yi,t − β′xi,t) = c[1 − β′]ΠT zi,t + c[−β′ IG]vj, (60)

which implies that c[−β′ IG]ΠT = 0 must hold. Because ΠT has rank K,
c[1 − β′] is identified up to scale. Setting c = 1, β is identified.

Suppose that the model is correctly specified and that the parameter β
is identified. Then the former implies Πy,T = β′Πx,T while the latter implies
that the rank of Πx,T is K. Therefore the rank of ΠT is K.

Proof of Theorem 1. Because

1√
nT

∑
i 6=j

T∑
s,t=1

Yi,sPi,j,s,tY
′
j,t =

1

n
√
nT

∑
i 6=j

T∑
t=1

ΠT zi,tz
′
j,tΠ

′
T +

1

n
√
nT

∑
i 6=j

T∑
t=1

ΠT zi,tv
′
j,t

+
1

n
√
nT

∑
i 6=j

T∑
t=1

vi,tz
′
j,tΠ

′
T +

1

n
√
nT

∑
i 6=j

T∑
t=1

vi,tv
′
j,t,(61)

we have

1√
nT

∑
i 6=j

T∑
s,t=1

Yi,sPi,j,s,tY
′
j,t −

1

n
√
nT

∑
i 6=j

T∑
t=1

ΠT zi,tz
′
j,tΠ

′
T

=
1

n
√
nT

∑
i 6=j

T∑
t=1

ΠT zi,tv
′
j,t +

1

n
√
nT

∑
i 6=j

T∑
t=1

vi,tz
′
j,tΠ

′
T +

1

n
√
nT

∑
i 6=j

T∑
t=1

vi,tv
′
j,t

=
1

n
√
nT

∑
i 6=j

T∑
t=1

ftv
′
j,t +

1

n
√
nT

∑
i 6=j

T∑
t=1

vi,tf
′
t +

1

n
√
nT

∑
i 6=j

T∑
t=1

vi,tv
′
j,t

=
1√
nT

T∑
t=1

ft

n∑
j=1

v′j,t +
1√
nT

T∑
t=1

n∑
i=1

vi,tf
′
t +

1

n
√
nT

∑
i 6=j

T∑
t=1

vi,tv
′
j,t

= I + II + III. (62)

The variance-covariance matrix of I is

1

nT

T∑
s,t=1

n∑
i,j=1

E[vech(fsv
′
i,s)vech(ftv

′
j,t)
′] =

1

nT

T∑
t=1

n∑
i=1

E[vech(ftv
′
i,t)vech(ftv

′
i,t)
′].

(63)
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Similarly, the covariance matrix between I and II and the variance covariance
matrix of II are given by

1

nT

T∑
t=1

n∑
i=1

E[vech(ftv
′
i,t)vech(vi,tf

′
t)
′], (64)

1

nT

T∑
t=1

n∑
j=1

E[vech(vj,tf
′
t)vech(vj,tf

′
t)
′], (65)

respectively. I and III are uncorrelated because

1

nT

T∑
s,t=1

n∑
i=1

∑
j 6=k

E[vech(fsv
′
i,s)vech(vj,tv

′
k,t)
′] =

1

nT

T∑
t=1

∑
j 6=k

E[vech(ftv
′
j,t)vech(vj,tv

′
k,t)
′]

+
1

nT

T∑
t=1

∑
j 6=k

E[vech(ftv
′
k,t)vech(vj,tv

′
k,t)
′]

= 0 (66)

Analogously, II and III are uncorrelated. III is Op(n
−1). Therefore it

follows from our lemma that

vech(I + II + III)
d→ N(0,Σ). (67)

Thus, it follows from (62)—(67) that

1√
NT

∑
i 6=j

vech(viPijv
′
j)

d→ N(0,Σ). (68)

Proof of Corollary 1. The corollary follows from Theorem 1 because

vech(CĤC ′) = D+
n vec(CĤC

′) = D+
n vec(CĤC

′)

= D+
n (C ⊗ C)vec(Ĥ) = D+

n (C × C)D+
n vech(Ĥ). (69)

Proof of Proposition 2.

To simplify the notation, we assume that ft and vi,t scalar. Because Pi,j,t,t =
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1/n, Σ̂ can be written as

Σ̂ =
2

n2T

T∑
t=1

∑
i 6=j

(ft + vi,t)
2(ft + vj,t)

2 −

(
1

n

∑
i 6=j

(ft + vi,t)(ft + vj,t)

)2
 .
(70)

Repeating the martingale argument in the proof of the lemma, it can be
shown that

Σ̂ =
2

n2T

T∑
t=1

∑
i 6=j

f 2
t (v2

i,t + v2
j,t) + op(1)

=
2(n− 1)

n2T

T∑
t=1

n∑
i=1

f 2
t v

2
i,t +

2(n− 1)

n2T

T∑
t=1

n∑
j=1

f 2
t v

2
j,t + op(1)

= 2σ2
f

1

n

n∑
i=1

σ2
i,t + 2σ2

f

1

n

n∑
j=1

σ2
j,t + op(1)

= 4σ2
f

1

n

n∑
i=1

σ2
i,t + op(1). (71)

Thus, Σ̂ is consistent for Σ.
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Table 1. Empirical Rejection Frequencies
When the Parameter is Identified

G 5 5 5 5 10 10 10 10
n 100 100 200 200 100 100 200 200
T 100 200 100 200 100 200 100 200
Null Hypothesis

Under-identified 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Correctly Specified 0.008 0.005 0.005 0.006 0.006 0.002 0.006 0.005

Table 2. Empirical Rejection Frequencies
When the Portfolio-Specific Mean is Neglected

G 5 5 5 5 10 10 10 10
n 100 100 200 200 100 100 200 200
T 100 200 100 200 100 200 100 200
Null Hypothesis

Under-identified 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Correctly specified 0.464 0.750 0.945 0.998 0.379 0.623 0.889 0.998

Table 3. Empirical Rejection Frequencies
When There is No Factor Structure

G 5 5 5 5 10 10 10 10
n 100 100 200 200 100 100 200 200
T 100 200 100 200 100 200 100 200
Null Hypothesis

Under-identified 0.059 0.056 0.063 0.042 0.077 0.073 0.075 0.053
Correctly specified 0.004 0.003 0.004 0.001 0.005 0.001 0.001 0.001

Notes to the tables: The tables reports empirical rejection frequencies of our
tests in data generating processes calibrated on the CAPM models at the 5%
significance level.
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