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Comment
Fabio CANOVA

ICREA-UPF, AMeN, and CEPR, Department of Economics, Trias Fargas 25-27, 08005 Barcelona, Spain
(fabio.canova@upf.edu)

I discuss the identifiability of a structural New Keynesian
Phillips curve when it is embedded in a small-scale dynamic
stochastic general equilibrium model. Identification problems
emerge because not all the structural parameters are recover-
able from the semistructural ones and the objective functions
I consider are poorly behaved. The solution and the moment
mappings are responsible for the problems.

1. INTRODUCTION

Kleinbergen and Mavroeidis (KM) have written an excellent
article, compactly reviewing what we know about the identi-
fication of the parameters of a New Keynesian Phillips curve

when estimated by the generalized method of moments (GMM)
and including interesting Monte Carlo evidence to shed light on
the properties of various identification robust methods proposed
in the literature. This comment takes on two issues of inter-
est for applied macroeconomists that the paper has left on the
back burner: Nowadays structural Phillips curves are typically
considered, as opposed to the semistructural Phillips curves
that KM use; for policy exercises, a Phillips curve is typically
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embedded into a small- or medium-scale general equilibrium
(DSGE) model. Therefore, the identification of its parameters
requires a system-wide rather than a single equation perspec-
tive.

To discuss these issues I will first write a canonical small-
scale structural model that constitutes the backbone of those
medium-scale models currently used in policy institutions for
forecasting and policy evaluation. I will then discuss the differ-
ence between the structural and the semistructural versions of
such a model and examine the identification of the parameters
when impulse responses or likelihood-based methods are used
to construct the objective function.

I want to stress that this comment is concerned with popu-
lation identification problems. That is, the problems I highlight
are intrinsic to the theory rather than specific to a dataset or a
sample. Their solutions therefore require alterations of the the-
ory rather than the acquisition of better or longer datasets and/or
a careful selection of objective functions to be optimized.

2. A PROTOTYPE SMALL–SCALE NEW
KEYNESIAN MODEL

The baseline model I consider has log-linearized optimality
conditions of the form:

yt = h

1 + h
yt−1 + 1

1 + h
Etyt+1

+ 1

φ
(it − Etπt+1) + v1t, (1)

πt = ω

1 + ωβ
πt−1 + β

1 + ωβ
Etπt+1

+ (φ + ν)(1 − ζβ)(1 − ζ )

(1 + ωβ)ζ
yt + v2t, (2)

it = λrit−1 + (1 − λr)(λππt−1 + λyyt−1) + v3t, (3)

where h is the degree of habit persistence, φ the relative
risk aversion coefficient, β the discount factor, ω the degree
of price indexation, ζ the degree of price stickiness, ν the
elasticity of labor supply, while λr, λπ ,λy are monetary pol-
icy parameters. v1t and v2t are AR(1) processes with para-
meters ρ1, ρ2, while v3t is iid. The variances of the shocks
are denoted by σ 2

i , i = 1,2,3. Equation (1) is a log-linearized
Euler condition; the second is a version of a New Keynesian
Phillips curve obtained by log-linearizing the optimal pricing
decision around a zero steady state inflation; and the third is
a policy rule. The model has 14 structural parameters: θ1 =
(h, φ,β,ω, ν, ζ, λr, λπ ,λy) are economic parameters and θ2 =
(σ 2

1 , σ 2
2 , σ 2

3 , ρ1, ρ2) are auxiliary parameters. While the specifi-
cation is rather standard, two features of (1)–(3) are worth dis-
cussing. First, the policy rule is backward looking—this allows
us to name v3t as a monetary policy innovation. Second, there
is habit in consumption, a feature typically absent from basic
versions of the theory, but always included in the larger-scale
structures.

The semistructural version of the model eschews the cross-
equation restrictions that the theory imposes on the coefficients

and is of the form:

yt = a1yt−1 + a2Etyt+1 + a3(it − Etπt+1) + v1t, (4)

πt = a4πt−1 + a5Etπt+1 + a6yt + v2t, (5)

it = a7it−1 + a8πt−1 + a9yt−1 + v3t. (6)

Note that (5) corresponds to the specification used by KM. This
version of the model also has 14 parameters, α = (a1, . . . ,a9)

and θ2 = (σ 2
1 , σ 2

2 , σ 2
3 , ρ1, ρ2) but, following the logic of rank

and order conditions, one can see that even when all the pa-
rameters of (4)–(6) are identifiable it is impossible to recover
all the θ1 from estimates of the a’s—ζ and ν enter multiplica-
tively and only in the slope parameter a6, while a1 and a2 con-
tain information only about h. Hence, conditioning on a model
where variables are expressed in deviation from the steady state
and absent external information, it is impossible to examine the
structural determinants of the slope of the Phillips curve and,
consequently, back out estimates of the frequency of price ad-
justments, ζ . To solve this problem it is necessary to specify ad-
ditional equations that allow the elasticity of labor supply ν to
be identifiable. For example, one could solve the model around
a flexible price equilibrium rather than the steady state and add
the definition of flexible output to the system of equations.

3. MAPPING THE SEMISTRUCTURAL MODEL INTO
A POPULATION OBJECTIVE FUNCTION

Local identification of the parameters of the model (4)–(6)
requires that the objective function have a unique extremum in
correspondence with the true parameter vector; that the Hessian
of the objective function be of full rank in the neighborhood of
the true parameter vector; and that the curvature of the objec-
tive function in the neighborhood of the true parameter vector
be sufficient to translate the objective function information into
parameters information.

Absent the first condition, models with different theoretical
features may be observationally equivalent given a particular
objective function (see Sargent 1978; Kennan 1988; Neely, Roy,
and Whiteman 2001; Kim 2003; Beyer and Farmer 2004; and
Canova and Sala 2006; among others). Clearly, observational
equivalence crucially depends on the selected objective func-
tion. The second condition ensures that under-identification of
pathologies where the objective function is insensitive to vari-
ations in one or more parameters (see Choi and Phillips 1992
and Canova and Sala 2009) will be absent. For example, the
belief that the discount factor β is hard to estimate with cycli-
cal data in a real business cycle model can be formalized by
showing that the rank of the Hessian of the objective function
is deficient for any true β ∈ [0.96,0.9999].

The first two conditions rule out somewhat extreme kinds
of identification pathologies. The third safeguards against more
subtle weak and partial identification problems. Deficiencies in
the curvature of the objective function in the neighborhood of
the true parameter vector imply that parameter changes only
marginally affect the objective function—it is either nearly flat
in some dimensions (weak identification) or displays ridges
(partial identification).
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The mapping from the parameters of the model (4)–(6) to
a given objective function may fail to meet these three neces-
sary criteria for identification because three types of transfor-
mations are needed to go from the former to the latter. First, the
model needs to be solved—this involves a nonlinear and typi-
cally numerical transformation. Second, some sufficient statis-
tic (unconditional moments or impulse responses) is computed
to summarize the informational content of the solution—this
is another nonlinear transformation. Third, an objective func-
tion expressing the distance between model-based and actual
summary statistics is constructed—this can be a highly nonlin-
ear transformation if, for example, one compares turning points
of economic activity. When likelihood-based methods are used,
the last two steps are combined and the VAR(1) solution is used
directly to construct the likelihood or the kernel of the posterior.
When some variables appearing in the solution are omitted be-
cause, for example, they are unobservable, the solution for the
observables is an ARMA(∞,∞) (see Canova 2007) so one ex-
tra nonlinear transformation is needed.

It is difficult to study in theory how these nonlinear transfor-
mations repackage the information contained in the parameters.
However, one can use graphical and exploratory analyses to de-
tect problems. To compare my conclusions with those of KM,
I will focus attention solely on the identification of a4,a5,
and a6, which give us information about the structural para-
meters β , ω and, given estimates of a3, about the conglomer-
ate of ζ and ν. To make the discussion concrete, I choose the
true parameter vector θ to be β = 0.985, φ = 2.0, ν = 1.0, ζ =
0.68,ω = 0.70,h = 0.85, ρr = 0.2, ρy = 1.1, ρπ = 1.5, ρ1 =
0.65, ρ2 = 0.65, σ1 = 0.003, σ2 = 0.002, σ3 = 0.001, in line
with the estimates of Rabanal and Rubio-Ramirez (2005).
These values imply that a4 = 0.4143,a5 = 0.5830,a6 = 0.2759
are the true values of the parameters of interest.

I consider three objective functions: one measures the dis-
tance of responses to monetary policy shocks—twenty equally
weighted responses of the three variables are used; the second is
the likelihood function, constructed under normality of the dis-
turbances; the third is the kernel of the posterior, obtained using
informative priors for the structural parameters entering a4, a5,
and a6 and centered at the true values with small spreads.

4. ARE THE PARAMETERS OF THE PHILLIPS
CURVE THEORETICALLY IDENTIFIABLE?

For this class of models and for my choice of “true” θ , all
the objective functions have a unique local extremum. Five of
the eigenvalues of the Hessian of the distance function are ex-
actly zero—those corresponding to ρ1 and ρ2, which are under-
identified from monetary policy shocks, and those correspond-
ing to σi, i = 1,2,3, which are under-identified from any scaled
impulse responses. The other two objective functions have no
eigenvalue with this feature. Nevertheless, six eigenvalues of
both the Hessian of the distance function and of the likelihood
function are small relative to the average eigenvalue—weak and
partial identification problems could be present. To examine
whether these eigenvalues are associated with a4, a5, and a6,
I graphically explore how the objective functions change when
these parameters vary in the neighborhood of the true parame-
ter vector (see the range presented in the x-axis in Figure 1),
keeping all other parameters fixed at their true values.

The distance function is rather flat in all dimensions (the elas-
ticity is always smaller than 0.1) and somewhat asymmetric
in a4. When plotted in two dimensions it is still very flat, par-
ticularly for a5, which is the forward-looking parameter of the
Phillips curve. The log-likelihood function, which contains all

Figure 1. Shape of different objective functions.
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the information of the model, is better behaved except for the
marked asymmetry it displays in all dimensions. When plotted
in two dimensions it has sufficient curvature in both a4,a5 and
a5,a6 but displays diagonal ridges—a4,a5, and a6 are not sep-
arately identifiable. The log posterior kernel, instead, is nicely
peaked in all dimensions. Since the priors used in structural es-
timation are conventionally centered at calibrated values and
with tight spreads—as we have done here—it is not difficult to
see that the prior may determine the shape of the posterior.

These visual impressions are confirmed using the relative
size of the eigenvalues of the Hessian of the objective func-
tion at the true parameters. For example, the eigenvalues of the
Hessian of the distance associated with a4 and a6 are of the or-
der of 10% of the average eigenvalue of both matrices and the
one associated with a5 is smaller than 0.001% of the average
eigenvalue.

In conclusion, both the distance and the likelihood functions
will be unable to appropriately identify the forward-looking
parameter of the Phillips curve, but for different reasons. The
distance function will not work because identification of a5 is
weak. The likelihood function will not work because a5 is lin-
early related to the other parameters of the Phillips curve.

Which mapping is responsible for these information deficien-
cies? The solution and moment mappings both contribute. In
the solution mapping, four of the nine eigenvalues are smaller
than 0.20 of the average eigenvalue, while with the moment
mapping two additional eigenvalues are smaller than 0.20 of the
average. Since the smallest eigenvalue of the solution mapping
is the one associated with a5, identification of this parameter
is difficult unless the model or the way it is solved is changed.
Note that the use of higher-order approximations does not guar-
antee better identification properties in the population (see, e.g.,
Canova and Sala 2006).

5. ESTIMATION

Since it is unlikely that applied investigators will spend
time altering the theory or refining their numerical solution
techniques, estimation methods that work when identification
problems exist are needed. While KM have made it clear that
identification robust methods exist in the single equation GMM
literature, no procedure has been devised for likelihood-based
methods. Furthermore, while impulse response matching esti-
mators share similarities with GMM, failure to use the contin-
uously updating weighting matrix in the estimation precludes a
direct extension of the GMM results.

In this section, I first show what identification problems im-
ply when nonidentification robust methods are used to estimate
the parameters of the Phillips curve and then I use ideas of the
literature that KM review to construct estimates of the para-
meters of interest. The punchline is that when weak and par-
tial identification problems are present, standard methods pro-
duce erratic estimates and meaningless standard errors, even
in extremely large samples. However, estimation intervals ob-
tained by inverting the objective function are practically iden-
tical to those obtained with standard methods because the dis-
tance function is extremely flat in many dimensions (compare
with Nason and Smith 2008). This is perhaps unsurprising since
the distance function I use is not a robust objective function in
the sense of KM.

The exercise is as follows. Given the correct model and 500
initial conditions in the neighborhood of the true parameter vec-
tor, I estimate a4,a5, and a6 using a distance function that mea-
sures how far output gap, inflation, and the nominal rate re-
sponses to monetary shocks in the model are from the true ones.
Figures 2 and 3 present the histograms of initial and final esti-
mates for two different choices of the true parameter vector; the

Figure 2. Histogram of initial conditions and estimates.
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Figure 3. Histogram of initial conditions and estimates.

x-axis shows the range for the chosen initial conditions. When
the forward-looking component of the Phillips curve is strong
and the slope is economically different from zero, problems are
concentrated in a5—the range of final estimates of a5 is only
marginally smaller than the range of initial conditions and the
correlation between initial conditions and final estimates is high
(around 0.7).

When the forward- and the backward-looking components
are roughly similar and marginal costs are important for infla-
tion, estimates of all semistructural parameters are always away
from the true parameters, the sum of estimates of a4 and a5
always exceeds one, the slope of the Phillips curve is system-
atically underestimated, and the bias is large (order of 10%–
25%). When sample rather than population objective functions
are available, all these problems could be greatly magnified.

Figures 2 and 3 show that the range of estimates of a5 ob-
tained by inverting the objective function is practically iden-
tical to the one obtained with standard minimum distance
estimators—out of the 500 cases only 5 are eliminated. This oc-
curs because, in all the simulations I have run, the value of the
objective function at the estimates is close to the median value
of the χ2(51) distribution. This could have been expected. In
Figure 1 the objective function is so flat in a5 that estimates in
the range [0.45, 0.80] only very marginally change its value.

To conclude, the problems that KM highlighted in their
excellent review get compounded when the New Keynesian
Phillips curve is embedded into a small scale DSGE model
and multivariate estimation techniques are considered (see also
Cochrane 2007); there are additional headaches for applied in-
vestigators when structural rather than semistructural estima-
tion is attempted. The solution mapping seems to be respon-
sible for the identification difficulties. Poorly behaved solution
mappings are especially problematic because they leave applied

investigators with no choice other than to respecify the structure
they wish to estimate or refine their solution procedure.
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