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Preliminary

Abstract

This paper studies the optimal financing of an investment project subject to the risk of

default. A project needs outside funding from a lender, but the borrower can walk away

at any moment and take some outside opportunity. The value of this opportunity is

random and not observable by the lender. We show that the optimal dynamic contract

may allow default along the equilibrium path. Focusing on the dynamics of default,

debt and capital accumulation, we find that over the life of the project the probability

of default declines, long-term debt falls and capital rises.

Introduction

This paper derives the optimal dynamic contract to finance an investment project when the

borrower lacks the commitment to not default. In our model, the borrower has a project that

needs outside funds to cover an initial fixed cost as well as a stream of capital investments.

Lending is constrained by voluntary repayment: the borrower can, at any moment, walk

away for some outside opportunity. The value of the outside opportunity is random and

private information. This assumption implies that default actually occurs in equilibrium.

Within this environment, we study constrained-efficient long-term contracts between the

1



outside lender and the borrower. That is, we place no ad hoc assumptions on contracting,

but impose the constraints arising from the entrepreneur’s private information and lack of

commitment.

Our model allows for a few different economic interpretations. The most obvious is

the financing of a firm, where the lender is an entrepreneuer undertaking an investment

project and the borrower is a bank seeking to finance this project, as in Albuquerque and

Hopenhayn (2004). Alternatively, one can apply the model to human capital investments

and on-the-job training. The borrower in this case is a worker accumulating skills while

working at a firm. The firm helps finance these investment but is concerned about retaining

the worker. Finally, the model can be applied to an international context by interpreting the

borrower as a sovereign government seeking to finance its government spending, including

public investments, from foreign investors, as in Thomas and Worrall (1994).

We assume that outside opportunities are unattractive relative to the investment project,

so that it is never efficient to take them. With commitment the outside opportunities are

completely irrelevant. However, without commitment, the availability of the outside oppor-

tunities does constrain lending because the entrepreneur may take them if they are privately,

but not socially, efficient.

When the value of the outside option is non random or is publicly observed, as in Albu-

querque and Hopenhayn (2004), then it is never optimal to exercise it. Default never occurs

along the equilibrium path. This property is also characteristic of other limited commitment

models, such as in applications to consumption insurance and smoothing among individuals

(Kocherlakota, 1996; Alvarez and Jermann, 2000), or international borrowing and lending

by sovereign countries (Thomas and Worrall, 1994; Kehoe and Perri, 2002). While all these

models capture the friction that ex post potential default introduces on ex ante lending, they

are completely silent on actual default behavior.

In our model, in contrast, default occurs along the equilibrium path. Whenever the value

of the outside opportunity is random, and its realization is not observed by the lender, we
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show that the optimal contract allows firms to exercise the outside option. The contract

treats all firms identically, but over time some firms default and choose to exit the contract,

while others choose to stay.

Our focus is on the dynamics of capital, debt and default. The optimal contract offered

by the lender is forward looking, so it specifies and anticipates all these variables. We find

that the probability of default is highest at the beginning of the lending relationship and

declines over time. Capital rises over time as the entrepreneur pays back the long-term

debt to the lender for initiating the project. The lender may play an increasing role in the

financing of capital investments through short-term debt.

We show that this optimum can be implemented using risk adjusted short-term debt. In

this implementation the lender decides investment and borrowing sequentially. The interest

rate depends on the current level of debt and the level of capital.

Our environment is closest to Albuquerque and Hopenhayn (2004) model of firm finance.

Their model features limited commitment, but all uncertainty is publicly observable by the

lender. Clementi and Hopenhayn (2006), on the other hand, considers unobservable shocks

to revenue, but with no commitment problems. In both papers, if liquidation is assumed

valuable enough to the lender, then exit may occur after a sufficiently bad history of shocks,

but there is no default. For contrast, we assume in our model that the liquidation value to

the lender is zero: the interaction of private information and limited commitment is then

key for our results on default.

Our paper is also connected to a strand of literature that features default and studies

the impact on lending, but limits a priori the set of available contracts. In a seminal paper,

Eaton and Gersovitz (1981) study a model of sovereign debt imposing the restriction that

debt contracts be short term and not state contingent. In the model the sovereign country

faces idiosyncratic income shocks that it wishes to smooth and insure with foreigners who

are risk neutral. The punishment for default is exclusion from financial markets. Arellano

(2007) extend this framework by allowing income shocks to be persistent. This kind of

3



model has also been applied to consumer credit by Chatterjee et al. (2005). In all these

models, because debt is required to be non-continent, default does occur in equilibrium

and interest rates on loans adjust to the varying default risk. Our paper differs from this

literature in a few dimensions. First, we model the financing of an investment project,

instead of the provision of consumption smoothing. Second, we do not restrict contracts to

be noncontingent, but instead derive them from the assymmetry of information regarding

outside options. Finally, and most importantly, our contracts are derived from a long-term

relation, instead of a sequence of short term contracts. In particular, this implies that we

allow for an unrestricted maturity structure of debt, instead of imposing that all debt be

short term.1

The rest of the paper is organized as follows. In Section 2 we present the basic model

economy and solve for the first best allocation. In Section 3 we briefly discuss the optimal

contracting problem if the outside options were observable and contractable. Section 4

contains our main analysis for the model with unobservable outside options and default.

Section 5 discusses a possible implementation of this optimal contract. Section 6 discusses

relates the financially constrained path of investment in our model with familiar Tobin-q

characterization of optimal investment. Section 7 contains our conclusions.

1 An Investment Project in Need of Funding

We study the efficient contract between an agent and a principal. Both are infinitely lived,

risk neutral and discount flows at the same rate r > 0. The agent is needed to run the

project, she can exclusively operate the technology. The principal can help finance it by

enduring negative flows. In contrast the agent must consume non-negatively and starts with

no financial wealth.2

1Arellano and Ramanarayanan (2006) considers a consumption smoothing model with noncontingent
bonds, as in Eaton and Gersovitz (1981) but allowing for bonds of two maturities, one- and two-period
bonds.

2Alternatively, we could assume the principal also consumes non-negatively but holds a large enough
initial wealth position.
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The project requires an initial irreversible investment of I0. This payment initiates capital

at k0 and opens access to the following stream of profits. At any point in time t, if k(t) is the

current stock of capital and k̇(t) = ∂
∂t

k(t) is its rate of change, flow returns are R(k(t), k̇(t))

which capture profits net of investment costs.

We assume the return function R(k, k̇) is concave, and strictly so in at least one of its

arguments. When it is strictly concave in k̇ we say there are adjustment costs in capital

accumulation. If, on the other hand, it is linear in k̇ there are no adjustment costs and we

write R(k, k̇) = R(k, 0)− k̇. Finally, we impose a condition on the cross partial that ensures

there is at most one steady-state level capital at the first-best.

Assumption 1. The return function R(k, k̇) is twice continuously differentiable and concave,

with either: (a) R(·, k̇) strictly concave for all k̇; or (b) R(k, ·) strictly concave for all k. In

addition, the cross-partial derivative satisfies R21(k, 0) ≤ 0 for all k.

A simple example satisfying these assumptions is

R(k, k̇) = Φ(k) − δk − c(k̇) − k̇,

where Φ is concave and represents revenues, Ψ is convex with Ψ′(0) = 0 and represents

adjustment costs, and δ ≥ 0 is the rate of depreciation. In later sections we develop a few

other examples.

The principal may commit to any contractual agreement, but the agent lacks such com-

mitment. Before describing these contracts and the constraints that arise from this lack of

commitment, it is useful to study the first-best benchmark allocation that maximizes the

present value of profits without any such constraints.
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1.1 First best

Denote by W (k) the value of the optimal accumulation problem given some initial capital

k0:

W (k0) ≡ sup
{k(t)}

∫ ∞

0

e−rtR(k(t), k̇(t)) dt s.t. k(0) = k0.

Let k∗(t) for t ∈ [0,∞) denote an optimal trajectory. Since the problem is convex, the value

function W is increasing, continuously differentiable and concave. Its Bellman equation is

given by

rW (k) = sup
k̇

(

R(k, k̇) + W ′(k)k̇
)

. (1)

Consider the case with adjustment costs, so that R(k, ·) strictly concave. Let g(k) de-

note the policy function for capital accumulation k̇ that maximizes (1). Then the optimal

trajectory k∗(t) solves the ordinary differential equation

k̇∗(t) = g
(

k∗(t)
)

with k∗(0) = k0.

There exists at most one finite steady state kss with g(kss) = 0. To see this, combine

the first order condition R2(kss, 0) + W ′(kss) = 0, with the envelope condition, rW ′(kss) =

R1(kss, 0), to obtain the steady-state condition

1

r
R1(kss, 0) + R2(kss, 0) = 0.

Assumption 1 then ensures that the left-hand side is locally decreasing, so there exists at

most one value kss satisfying this equation. It also ensures the global stability of any such

steady state: k̇ = g(k) > 0 for k < kss and k̇ = g(k) > 0 for k > kss.

We assume that the project starts with capital below its steady-state level. If no steady

state exists, so that g(k) > 0 for all k then we say that kss = ∞.

Assumption 2. k0 ≤ kss.
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Things are particularly simple without adjustment costs, when R(k, ·) is linear. Integrat-

ing by parts gives

∫ ∞

0

e−rtR(k(t), k̇(t)) dt = k0 +

∫ ∞

0

e−rt(R(k(t), 0) − rk(t)) dt.

Thus, the supremum is attained by a path that is discontinuous at t = 0 and sets capital

k∗(t) to the constant level kss that maximizes flow profits net of capital rental, R(k, 0)− rk.

The value function is linear in initial capital: W (k) = k0 + 1
r
maxk{R(k, 0) − rk}.

In either case, the project is worthwhile investing if and only if W (k0) − I0 > 0. To get

things going, we assume this is the case throughout.

Assumption 3. W (k0) − I0 > 0.

1.2 Outside option

The agent receives outside options which, if taken, leave a residual value of zero to the

lender. (This could be modified and a positive liquidation value included.) The outside value

s arrives with Poisson intensity λ and is distributed according to F (s, k), which increases

in first stochastic order with k. Notice that aside from the dependence on k there is no

persistence in the process for the shocks. This simplifies the analysis, but is not essential.3

When the outside option is publicly observable, this problem has the same structure as

Thomas-Worrall and has been studied in Albuquerque-Hopenhayn in a discrete time setting.

Our main objective is to depart from the previous literature by assuming that this outside

value is privately observed. For contrast, however, we will first consider the observable case.

To make things stark, we assume that the outside option is never good enough to warrant

separation: within the support of F (·, k) it is never efficient to so, for all values of k.

Assumption 4. If F (s, k) ∈ (0, 1) then s ≤ W (k).

3We also studied a version of the model with persistent shocks and obtained similar results.
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As we show below, this implies that there will be no liquidation when the outside option

is observable. Separations will be optimal, however, when outside options are privately

observed by the agent, since avoiding them may be too costly. This emphasizes a novel

aspects of our model: default, as inefficient separations, occurs in equilibrium.

1.3 Two Interpretations

We offer two economic interpretations of the model.

In the first, investment takes place in physical capital and the contract describes the

lending relationship between an entrepreneur/firm/borrower and an outside lender. The

value of the outside option may depend on capital to the extent that the entrepreneur is able

to walk away with some of the firm’s resources.

In the second, investment takes place in human capital and the contract describes the

optimal employment relationship between a worker and her employer. The outside option

may be interpreted as a new employment opportunity, the value of which may depend on

capital to the extent that human capital is at least partly “general” and is not entirely “firm

specific”.

2 Observable Outside Options: No Default

When the outside option is observable, the principal can always retain the agent by ensuring

that she is better off within the relationship. This may require the contract to match

outside options as they arise. Assumption 4 ensures that doing so is preferable to breaking

the relationship. Thus, default, defined here as an inefficient separation, never occurs in

equilibrium.

The problem can be solved recursively using the continuation utility of the borrower V

as a state variable together with the stock k. Let B(V, k) denote the value to the lender,
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which must satisfy the Hamilton-Jacobi-Bellman equation

rB(V, k) = max
k̇,V (s),V̇ ,w

(

R(k, k̇) − w + λ

∫

(B(V (s), k) − B(V, k))F (ds, k)

+ B1(V, k)V̇ + B2(V, k)k̇
)

(2)

subject to

w ≥ 0, (3)

rV = w + λ

∫

(V (s) − V )F (ds, k) + V̇ , (4)

V (s) ≥ s ∀s. (5)

Here V (s) − V represents the promised jumps in continuation utility when an outside offer

s occurs.

For high enough values of V the first best is attainable as follows. Define Vmin(k) to be

the smallest value that can be delivered to the agent assuming k follows the optimal path

k̇ = g(k). This value satisfies the following Bellman equation with w = 0:

rVmin(k) = λ

∫

Vmin(k)

(s − Vmin(k))F (ds, k) + V ′
min(k)g(k). (6)

For any value V ≥ Vmin(k) define the dividend schedule d(V, k) as follows:

rV = d(V, k) + λ

∫

V

(s − V )F (ds, k). (7)

This schedule will be decreasing in k and will reach zero precisely at the point where

Vmin(k(t)) catches up to V .

Proposition 2.1. For any (V, k) where V ≥ Vmin(k), B(V, k) = W (k) − V so the corre-

sponding investment policy coincides with the optimal one.

Proof. Use the dividend schedule defined above. We show now recursively that B(V, k) =
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W (k) − V. Substituting on the right hand side of equation (2)

rB(V, k) = max
k̇

R(k, k̇) − w + λ

∫

V

(W (k) − s − (W (k) − V (V (s), k)))F (ds, k) − V̇ + W ′(k)k

= max
k̇

R(k, k̇) − [d(V, k) + λ

∫

V

(s − V )F (ds, k)] + V̇ + W ′(k)k

= r(W (k) − V ).

Corollary 2.2. The optimal contract is financially feasible if and only if W (k0) − I0 ≥

Vmin(k0).

Note that at this particular point with V0 = Vmin(k0) the value of debt B(V, k0) is

decreasing in V. This implies that the value to the lender is maximized at some V < Vmin(k0).

Under the condition given in the above Corollary, competitive bidding of lenders would lead

to an efficient investment policy while monopoly power would lead to underinvestment.

If the condition of the corollary is not satisfied, competitive lending would also lead to

V0 < Vmin(k0), where B(V0, k0) = I0. Underinvestment will occur until a sufficiently high

outside option occurs that sets the continuation value of the borrower V (t) ≥ Vmin(k(t)).

3 Unobservable Outside Options: Equilibrium Default

We turn now to the case where the outside value s is privately observed by the borrower.

Assume for now that there is no recall with respect to this outside option, so it is lost if

not taken when the arrival occurs. As before, we consider the a recursive representation for

the lenders problem with state variables (V, k). The key difference to the case of observable

outside option is that continuation values for the agent cannot be made contingent on s, for

otherwise all agents would claim having the outside option that maximizes the continuation
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V (s̃). Letting V̇ represent the rate of change of V , the agent’s value evolves according to:

rV = w + λ

∫

V

(s − V )F (ds, k) + V̇ . (8)

Setting w = 0, which is optimal, defines a function V̇ = m(V, k) = rV −λ
∫

V
(s−V )F (ds, k)

which is increasing in V and decreasing in k. Let h(V, k) ≡ λ(1−F (V, k)) denote the hazard

rate of separation, which is increasing in k and decreasing in V . Note that a high current

value of capital k increases the current hazard rate directly, and has a positive indirect effect

on future hazard rates through a lower rate of change V̇ .

The value to the lender B(V, k) satisfies the following Bellman equation:

rB(V, k) = max
k̇,w

(

R(k, k̇) − w − h(V, k)B(V, k) + B1(V, k)m(V, k) + B2(V, k)k̇
)

, (9)

giving first order conditions for capital accumulation:

R2(k, k̇) + B2(V, k) = 0. (10)

This equation implicitly defines the policy function k̇ = g(V, k).

It would be useful to know whether the value function is concave in V for given k.

Although we cannot answer this question in general, we can relate the local curvature of V

to the dynamics of V and k. Note that m1(V, k) = r + h(V, k). Using this and applying

the envelope theorem to (9) the above is obtained. The value function B(V, k) satisfies the

following equation:

−h1(V, k)B(V, k) + B11(V, k)m(V, k) + B21(V, k)k̇ = 0 (11)

The first order condition implies that B21(V, k) = −R22(V, k) ∂k̇
∂V

, which is nonnegative if k̇

is increasing in V or if R is linear in k̇, e.g. no adjustment cost. If in turn V̇ ≥ 0 equation

11



(11) implies that B11 ≤ 0.

4 Two Cases Solved

This section considers two special cases. In the first, the distribution of outside options F

is independent of capital k. This would be the case if installed physical capital cannot be

taken by the borrower upon default. Or in the human-capital accumulation interpretation,

if human capital may be entirely firm specific. This case provides a stark contrast between

the situation where the outside option is publicly observable and the one where it is not.

In the second case, returns and outside values are linear in capital k. For example, this

would be the case in the aggregate international economy context with an “AK” model of

technology, which implies sustained growth, and if the country keeps only part of the capital

after a default. The homogeneity assumption allows us to reduce the state variables of the

contracting problem and gives a simple characterization of the optimum.

4.1 Outside Value Independent of Capital

We begin with the case where outside options is unaffected by capital, so that the distribution

of outside options is given by some c.d.f. F (s). This case provides the strongest contrast with

the observable outside option case, since with observability the lack of commitment does not

affect contracting. Either the project is implemented with first-best capital accumulation,

or not at all, and this choice is fully efficient. This follows because Vmin(k) is independent

of k. If, in addition, there are no adjustment costs, then there are no transitional dynamics:

capital is initiated immediately at its steady state level. With observable outside options

inefficiencies arise only when the outside option depends on capital.

When the outside option is privately observed by the agent this is no longer the case.

Due to the agent’s lack of commitment inefficient separations or default then arise. This,

in turn, affects the desired capital accumulation path as well as the decision to finance the

12



project or not. Finally, even without adjustment costs, there are now nontrivial transitional

dynamics towards the steady state. We conclude that, in contrast to the observable outside

options case, it is no longer crucial that outside options depend on capital k for the lack of

commitment to create losses in efficiency. Thus, assuming that capital does not affect outside

options generates the sharpest contrast between the optimal contract with observable and

unobservable outside options.

When F is independent of k, equation (8) specializes to

rV = w + λ

∫

V

(s − V )F (ds) + V̇ . (12)

As in Albuquerque-Hopenhayn it is optimal to set w = 0 until V reaches s. At that point

a constant wage w = rs can be used and the first-best is attained. Setting w = 0 and

integrating by parts gives

rV =

∫

V

h(s)ds + V̇ , (13)

where h(s) ≡ λ(1−F (s)). The lower bound Vmin for V is obtained just like before, by setting

V̇ = 0.

For any initial value V0 > Vmin the differential equation (13) generates an increasing path

V (t) that reaches s in finite time. This implies a decreasing path for the hazard rate of sep-

aration, defined by H(t) ≡ λ(1− F (V (t))). Let S(t) = e−
R

t

0
H(τ)dτ denote the corresponding

survival function. The optimal accumulation path from (k0, V0) then maximizes

∫

e−rtS(t)R(k(t), k̇(t)) dt.

This is a fairly standard accumulation problem with a risk adjusted discount factor. It can

be shown that the optimal accumulation rule satisfies

(r + H(t))R2(k, k̇) = −R1(k, k̇) +
d

dt
R2(k, k̇) (14)
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Intuitively, delaying investment saves on the interest and hazard of loss of the corresponding

adjustment cost. This is weighted against the loss of marginal revenue and changes in the

adjustment cost. Note that in the special case with no adjustment cost where R(k, k̇) =

f(k)− k̇ this condition reads (r +h(t)) = f ′(k), a standard investment equation relating the

stock of capital to the risk adjusted interest. For that case, the stock of capital rises over

time to the stationary optimal level as the risk of default decreases to zero.

We summarize this discussion in the next proposition.

Proposition 4.1. Suppose the distribution of outside options does not depend on installed

capital k. The optimal contract generates a declining path for the default probability. Without

adjustment costs, capital k(t) rises over time.

For the case without adjustment costs, consider the comparative static exercise of an

improvement in outside options, so that the new distribution F̃ first-order stochastically

dominates the original F . Intuitively, this increases the risk of default and makes financing

more costly. Indeed, it follows directly that h̃(V ) ≥ h(V ) and that m̃(v) ≤ m(v). For given

v0 this implies that hazard rates are higher at all points in time with distribution F̃ . As

a result, B̃(v) ≤ B(v). Thus, if the initial value of v0 is set at a break even point for the

lender, so that B(v0)− I0 = 0, then ṽ0 ≤ v0, which only reinforces the result. We summarize

this result in the next proposition.

Proposition 4.2. Suppose no adjustment costs and that F̃ first-order stochastically dom-

inates F , so that F̃ (s) ≤ F (s) for all s. Then the optimal contract for F̃ features higher

default rates along the equilibrium path and lower investment.

4.2 Homogeneous Returns and Outside Options

In this section we consider a specification where the outside value is affected by k in a

linear fashion and where the revenue function R is homogeneous of degree one in (k, k̇).

That is, the outside option has the form sk, where s has c.d.f. F (ds). Note that with this
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specification, the hazard rate of separation h(V, k) = λ(1 − F (V
k
)) is homogenous of degree

zero in (V, k) and the function m(V, k) is homogenous of degree one. The value and policy

functions inherits this property.

Proposition 4.3. The value function B(V, k) and the policy function g(V, k) are homoge-

neous of degree one in (V, k).

We can exploit the homogeneity to rewrite the Bellman equation as a function of the

ratio v = V/k:

rb(v) = max
k̇

R(1, k̇) − w − h(v, 1)b(v) + b′(v)m(v, 1) + (b(v) − b′(v)v)k̇

where b(v) = B(v, 1). The optimal choice in the rate of growth k̇ = g(v) solves:

R2(1, k̇) + b(v) − b′(v)v = 0. (15)

R22(1, k̇)
∂k̇

∂v
= b′′(v) (16)

so ∂k̇
∂v

has the opposite sign of b′′. Finally, the envelope condition for this problem is

−h1(v, 1)b(v) + b′′(v)(m(v, 1) − vk̇) = 0. (17)

Note that

v̇ =
V̇

k
−

V

k

k̇

k
=

1

k
(m(v, 1) − vk̇) (18)

so the envelope condition can be rewritten as:

−h1(v, 1)b(v) + b′′(v)v̇ = 0, (19)

showing that the sign of b′′ is the opposite of v̇. This proves the following.

Proposition 4.4. If B(v) is concave, both v and k̇ increase over time and the hazard rate
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decreases.

4.3 Simulations

This section presents numerical computations of the two special cases considered above. The

first set of simulations corresponds to the case of no outside options and the second to the

linear case.

4.3.1 Outside option independent of k

The environment is as follows. The return function R(k, k̇) = f(k)−δk−k̇, where f(k) = k0.5

and δ corresponds to the depreciation rate. Letting k∗ denote the optimal steady state capital

stock, the optimal value in absence of constraints is

W =
f(k∗) − (r + δ)k∗

r
,

where f ′(k∗) = r + δ. The interest rate used is r = 5% and depreciation rate δ = 5%.

Outside values are given by a distribution function F (s) = (s/s̄)γ, where s̄ corresponds to

the upper bound of the support that we chose equal to W, which equals 50 with the above

parameter values. This is the highest possible value consistent with inefficient liquidation in

the first best (or in the case where the contract is contingent on the outside option.) The

alternative scenarios we consider differ in the parameter γ of this distribution taking values

γ ∈ {0.1, 0.25, 0.5, 1}. Figure 1 below presents the c.d.f. corresponding to different values of

γ, where lower values correspond to higher functions. For higher γ outside options are more

attractive, so default and borrowing constraint should be more prevalent.

For illustrative purposes, Figure 2 shows the value functions B(V ) corresponding to

γ = 0.1 and 0.25. The upper value function corresponds to γ = 0.1 and the lower one

to γ = 0.25. Each is plotted starting at the corresponding value Vmin. Note that there is a
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Figure 1: Distributions of outside options:

section over which B is increasing, so that Pareto improvements are obtained by increasing V.

Competition would drive the initial value to the area where B is decreasing. The maximum

debt is given at the peak and is larger in the lower γ scenario. In absence of own financing of

the entrepreneur, the project will be financially feasible if and only if the initial investment

does not exceed this maximum debt value.

Table 1 gives the evolution of the value of a firm starting in period zero at the point

where debt is maximized:

t V B W = B + V h Survival k risk adjusted r
0 36.5 6.4 42.9 7.6 1.00 8.1 12.6%
1 37.9 6.3 44.2 6.7 0.93 9.0 11.7%
2 39.5 6.1 45.6 5.7 0.87 10.1 10.7%
3 41.2 5.6 46.9 4.7 0.83 11.6 9.7%
4 43.2 4.8 48.0 3.6 0.79 13.5 8.6%
5 45.3 3.7 49.0 2.4 0.77 16.2 7.4%
6 47.6 2.1 49.7 1.2 0.76 19.9 6.2%
7 50.0 0.0 50.0 0 0.75 25.0 5.0%

Table 1: Evolution of Optimal Debt with γ = 0.25.
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Figure 2: Value functions

It takes 7 periods (years) to reach the unconstrained steady state (because there are

no adjustment costs, it would be reached immediately in the absence of informational con-

straints.) The value to the borrower rises as debt decreases, resulting in an increase in total

surplus W. The hazard rate h decreases monotonically, starting from an initial value of 7.6%.

There is a 75% probability of surviving to the unconstrained stage. The last column gives

the adjusted interest rates that support these allocations and values.

Table 2 gives some summary values that are useful to compare across these scenarios. The

upper section gives the starting values in each scenario at which debt value is maximized.

Observing the third column labelled B0 shows how stringent constraints to total debt become

as γ increases, going from a maximum leverage of 27% for the case of γ = 0.1 to slightly

above 5% when γ = 1. Correspondingly, risk adjusted interest rates are higher in the latter

scenarios and the initial capital financed k0 much lower.

In order to compare properties of the contract, the Table 3 provides the evolution in the

cases γ = 0.1, 0.25 and 0.5, starting from the same level of debt (equal to the maximum
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γ V0 B0 W0 k0 Leverage
excl. k incl. k

0.1 30.0 11.2 41.1 11.1 27% 42.6%
0.25 36.5 6.4 42.9 8.1 15% 28.5%
0.5 40.3 4.0 44.3 6.1 9% 20.1%
1 43.2 2.4 45.6 4.5 5% 13.8%

Table 2: Summary statistics: maximum debt.

value for γ = 0.5). One way of motivating this exercise is if all these projects had the same

initial cost I0 equal to this initial debt B0. As γ increases, the initial risk of default increases

considerably thus decreasing the initial capital k0, decreasing the total survival probability

and increasing the length of time required to reach the unconstrained state. Correspondingly,

the total initial surplus W0 decreases. This decrease is not that dramatic since as γ increases,

default is typically associated with higher outside options.

4.3.2 Linear case

We now provide some results for the linear case where as described the value function is

homogenous of degree one in (V, k). As discussed above, it is convenient to define v = V/k

as state variable. This economy grows at a constant rate in the first best, giving total

value wk.The technology for production is linear Ak, and the adjustment cost quadratic:

C( k̇
k
) = 1

2
( k̇

k
)2. Outside opportunity is of the for sk, where s is distributed on [0, s̄], where

following similar arguments as above s̄ is chosen equal to w. The distribution for s is identical

as in the previous case, with values of γ = 0.25, 0.5 and 1. The statistics we present parallel

those discussed above.

The value functions for the three scenarios are presented in Figure 3, where as before

γ V0 W0 k0 Risk adjusted r0 Years to efficient Survival
0.1 45.6 49.6 21.0 5.9% 1.9 99%
0.25 44.8 48.8 15.5 7.7% 2.2 97%
0.5 40.3 44.3 6.1 15.2% 4.7 77%

Table 3: Summary statistics: starting from maximum B0 for γ = 0.5.
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Figure 3: Value functions

higher value functions B(v) correspond to lower γ and is associated with higher maximum

debt.

Table 4 gives the paths starting at time zero from the point of maximum debt for γ = 1.

It takes over 10 years to reach the unconstrained point, which happens with only 30%

probability. Initial hazard rates are very high, reflecting good outside opportunities and

correspondingly risk adjusted interest rates are very high and capital accumulation very low

(0.5% as opposed to 2.5% in the unconstrained case.). The following table provides summary

statistics to compare across different γ’s.

As in the case analyzed in the previous section, higher γ considerably decreases maximum

leverage, from 27.9% when γ = 0.25 to 15.4% for γ = 1. Table 4 provides a comparison

across scenarios starting all from a point where the value of debt is 3.6, the upper bound

for the γ = 1 case. As before, higher γ’s are associated to much lower total survcival and

increased time to the unconstrained state, a much higher initial adjusted interest rate and

corresponding much lower growth rate (0.4% when γ = 1 as opposed to 2.2% when γ = 0.25).
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t V B h Survival k growth risk adjusted r
0 19.7 3.6 21.3 1 0.4% 26.3%
1 20.1 3.6 19.8 0.81 0.6% 24.8%
2 20.5 3.5 18.2 0.67 0.9% 23.2%
3 20.9 3.3 16.4 0.57 1.2% 21.4%
4 21.4 3.1 14.5 0.48 1.5% 19.5%
5 21.9 2.8 12.5 0.42 1.7% 17.5%
6 22.4 2.4 10.4 0.38 2.0% 15.4%
7 22.9 2.0 8.2 0.34 2.2% 13.2%
8 23.5 1.4 5.9 0.32 2.3% 10.9%
9 24.1 0.9 3.5 0.31 2.4% 8.5%
10 24.7 0.3 1.1 0.30 2.5% 6.1%

10.4 25.0 0.0 0.0 0.30 2.5% 5.0%

Table 4: Evolution of Optimal Debt with γ = 1.

γ V0 B0 W0 k growth Risk adjusted r Leverage B0/W0

0.25 16.2 6. 3 22.4 0.6% 15.3% 27.9%
0.5 18.1 4.8 22.9 0.5% 19.9% 20.9%
1 19.7 3.6 23.3 0.4% 26.3% 15.4%

Table 5: Summary statistics: maximum debt.

As before and for the same reasons, the differences in default separation rates do not translate

into large differences in initial total value W0.

5 Implementation with Risk Adjusted Loans

In this section we ask whether the optimal contract defined above can be implemented by a

risk adjusted interest schedule. To make the analysis more transparent assume the function

B(V, k) is concave in V for all k and the optimal contract operates in a region where B is

decreasing in V. As a consequence, we may invert for each k this function expressing the

γ V0 W0 k growth Risk adjusted r0 Years to efficient Survival
0.25 21.2 24.8 2.2% 9.0% 6.5 88%
0.5 21.0 24.6 1.9% 13.3% 7.0 74%
1 19.7 23.3 0.4% 26.3% 10.4 30%

Table 6: Summary statistics: starting from maximum B0 for γ = 0.5.
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utility of the borrower as a function V (B, k) of debt B and assets k.

Consider the following capital accumulation problem for the borrower. Every period, as

function of the outstanding debt B and k, the agent makes a flow payment r(B, k) to the

lender, which is to be determined below. Faced with this schedule, the agent solves the

following:

rV (B, k) = max
k̇,c

(

c + V2(B, k)k̇ + V1(B, k)(r(B, k) − R(k, k̇)) +

∫

V (B,k)

h(s, k) ds
)

. (20)

The borrower pays to the lender R(k, k̇) . If it exceeds r(B, k) the debt falls and otherwise

it increases.

The first order condition for the agent’s choice of k̇ is:

V2(B, k) − V1(B, k)R2(k, k̇) = 0 (21)

If V were indeed the inverse function of B, then

V2(B, k)

V1(B, k)
= B2(V (B, k), k) (22)

so the choice of k̇ is the same. We will now determine the function r(B, k) that will generate

the same path for B as B(V (t), k(t)). First note that

Ḃ = B2(V, k)k̇ + B1(V, k)V = r(B, k) − R(k, k̇) (23)

Moreover, the value to the lender must satisfy the following:

rB = R(k, k̇) − h(V, k)B + Ḃ (24)
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which after substitution of Ḃ gives

r(B, k) =
(

r + h(V (B, k), k)
)

B (25)

Note that this payment as a ratio of B is the risk adjusted interest rate r + h.

Proposition 5.1. With r(B, k) given by equation (25), the solution to the borrower’s prob-

lem (20) yields a trajectory k(t) that coincides with the solution to the lender’s problem (9).

The function V (·, k) is the inverse of B(·, K), for all k.

6 Tobin’s Q

This section derives an equation that draws a connection with Tobin’s q. We begin by defining

q as the marginal value of debt B2 (V, k) . We then consider defining q as the marginal effect

on total expected discounted cash flows.

Start with the Bellman equation

rB (V, k) = max
k̇,w

{R(k, k̇) − h (V, k) B (V, k) + B1m (V, k) + B2k̇}

k̇ determined by the first order condition

R2(k, k̇) + B2 (V, k) = 0.

The Envelope condition with respect to k

[r + h (V, k)] B2 (V, k) = R1

(

k, k̇
)

− h2 (V, k) B (V, k) + dB2/dt + B1m2 (26)

Rewrite this as

[r + h (V, k)] q = R1

(

k, k̇
)

+ q̇ − h2 (V, k) B (V, k) + B1m2.
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To really match the notion of q, we need to assess the marginal effect that investment has

on expected discounted cash flows. Let W (V, k) denote this value. Let E (V, k) denote the

equity component of V (that is the value without taking into account the outside option). It

follows that W (V, k) = B (V, k) + E (V, k) . The Bellman equation for equity value is

rE (V, k) = −h (V, k) E (V, k) + E1m (V, k) + E2k̇.

Now take the envelope condition with respect to k is

(r + h (V, K)) E2 (V, k) = −h2E (V, k) + dE2/dt + E1m2 (27)

Adding up equations (26) and (27) we obtain

(r + h (V, k))W2 (V, k) = R1

(

k, k̇
)

− h2W (V, k) + dW2/dt + W1m2

and letting q = W2 (V, k) gives

(r + h (V, k)) q = R1

(

k, k̇
)

− h2W (V, k) + q̇ + W1m2. (28)

In the special case where the outside value is independent of k we get something simpler

(r + h (V )) q = R1(k, k̇) + q̇

which is a standard risk-adjusted q equation. In contrast, when k affects the outside value,

equation (28) incorporates the effect that higher k has on immediate and future separation.
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7 Conclusions

In this paper we studied the optimal financing of a project subject to the constraint that

borrowers default with positive probability. Our model bridges two strands of literature: the

limited commitment model where the risk of default is present but never takes place, and

the incomplete contract literature where default takes place because contracts are assumed

to be noncontingent.

By allowing for default, we are able to study the dynamics of default in an optimal long-

term relationship. Our results seem broadly consistent with stylized facts on the patterns

for debt, equity and default of new firms. Our model is highly stylized but seems easily

extendable. In particular, future work could allow the shocks to the outside option to

be persistent, include shocks to the project’s returns and explore other possible contract

implementations.
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