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Abstract

This paper proposes a framework to implement regression-based tests of predictive ability

in unstable environments, including, in particular, forecast unbiasedness and efficiency tests,

commonly referred to as tests of forecast rationality. Our framework is general: it can be applied

to model-based forecasts obtained either with recursive or rolling window estimation schemes,

as well as to forecasts that are model-free. The proposed tests provide more evidence against

forecast rationality than previously found in the Federal Reserve’s Greenbook forecasts as well

as survey-based private forecasts. It confirms, however, that the Federal Reserve has additional

information about current and future states of the economy relative to market participants.
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1 Introduction

Forecasting is a fundamental tool in economics, as well as statistics, business and other sciences.

Judging whether forecasts are good is therefore of great importance, especially since forecasts are

used everyday to guide policymakers’ and practitioners’ decisions. A large literature has provided

important insights on how to test whether forecasts are optimal. For example, as the seminal works

of Granger and Newbold (1986) and Diebold and Lopez (1996) show, under covariance stationarity

and a mean square error loss, forecast errors are mean zero (conditionally and unconditionally) and

the h-step-ahead forecast error has zero serial correlation after (h − 1) lags. If a forecast is such

that its forecast errors satisfy such properties, it is deemed optimal or rational.2 If a forecast does

not satisfy these properties, researchers conclude that the model underlying such forecast can be

improved.

However, one of the fundamental assumptions tacitly underlying the existing literature is that

of covariance stationarity. Only very recently researchers have become concerned about the conse-

quences of relaxing stationarity assumptions in performing inference regarding predictive ability.3

For example, Giacomini and Rossi (2010) have developed methods to perform inference on forecast

comparisons when the forecasting ability may be affected by instabilities. Besides forecast compar-

isons, another important issue that forecasters face in practice is to determine whether forecasts

are rational or optimal, and that might also be affected by instabilities. In fact, several studies

evaluate the robustness of forecast rationality in sub-samples (e.g. Croushore 1998, Patton and

Timmermann, 2012, Croushore, 2012). However, while in some cases the choice of the sub-samples

may be guided by economic considerations (e.g. sub-samples associated with structural breaks

identified by the Great Moderation or Great Recession), in many cases the choice of sub-samples

may be ad-hoc. Even when the choice is guided by economic considerations, it may be important

to assess the robustness of the empirical results to other sub-samples, as there might be multiple

breaks in the data, or the break date might be uncertain or completely unknown.

This paper proposes forecast rationality tests that are robust to the presence of instabilities.

We consider a framework where forecasts are produced either with recursive or rolling estimation

schemes, and the size of the estimation window is large relative to the sample size. We propose

the Bank of Canada, CREI, Trinity College Dublin, University of Barcelona, University of Montreal, Norges Bank,

the 2011 IWH-CIREQ Macroeconometric Workshop, the 2011 JSM, the 2011 MEG, the 2013 Econometric Society

Summer Meetings, the 2014 EABCN/Bank of England and ECB workshops and the 2014 NBER-NSF Time Series

Conference for comments. B. Rossi gratefully acknowledges financial support from the European Research Agency’s

Marie Curie Grant 303434 and the ERC Grant 615608. A previous version was circulated under the title: “Forecast

Optimality Tests in the Presence of Instabilities.”

2Note that we use optimality and rationality interchangeably.
3See the discussion in Rossi (2013).
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a “Fluctuation Rationality” test, which is based on testing forecast rationality in rolling windows

over the out-of-sample forecast portion of the data. By using rolling windows we avoid averaging

out instabilities, and our tests can have greater power to reject forecast rationality than traditional

tests when rationality is present only in sub-samples of the data. Our “Fluctuation Rationality”

test can be applied to study forecast unbiasedness, efficiency, rationality, encompassing, as well as

serial uncorrelation, among other regression-based tests of forecasting ability.4

This paper is closely related to Giacomini and Rossi (2010) and West and McCracken (1998).

Giacomini and Rossi (2010) propose a “Fluctuation test” to compare forecasting models in the

presence of instabilities. While our “Fluctuation Rationality” test is inspired by their work, there

are several differences between their framework and ours. Their framework compares models’

relative forecasting performance and is focused primarily on a rolling window estimation where the

size of the window is fixed (i.e. finite). We are instead interested in measures of absolute predictive

ability and tests for forecast rationality. Our framework focuses on an estimation window size that

is a fixed fraction of the total sample size, which allows us to take into account parameter estimation

error and considerably complicates the analysis. The latter framework is similar to that of West

and McCracken (1998). The difference between our tests and West and McCracken’s (1998) is that

the latter is based on measures of average forecasting ability in the out-of-sample portion of the

data, and may lack power in certain directions when there are rationality breakdowns over time.

Our tests can be used both when the forecasting model is known (and thus the researcher needs to

correct for parameter estimation) and when it is not known (such as in the Greenbook and survey

forecasts in our empirical application).

We demonstrate the usefulness of our procedures by evaluating the rationality of the Federal

Reserve’s Greenbook forecast of inflation as well as the private sector’s forecasts provided by the

Survey of Professional Forecasters (SPF) and Blue Chip Economic Indicators (BCEI). We revisit

the empirical analysis in Romer and Romer (2000), Patton and Timmermann (2012), and Croushore

(2012) in a framework that is more powerful in the presence of instabilities. We then reconsider

Romer and Romer’s (2000) hypothesis that the Federal Reserve has an information advantage in

forecasting inflation beyond what is known to the private forecasters, again using our framework is

more powerful in the presence of time-variation. In both cases, our empirical results are very differ-

ent than those in the literature: first, we find more empirical evidence against forecast rationality

using our tests than using the traditional tests. In fact, the Fed was consistently under-estimating

inflation in the 1970s, due to recurrent and unpredictable oil price shocks, and over-estimating

4It should be noted that, as shown in Rossi (2012), our framework can encompass the hypothesis of forecast

optimality for more general definitions of optimality. As Patton and Timmermann (2010) suggest, under certain

regularity conditions forecast optimality tests can reduce to those considered in this paper for arbitrary loss func-

tions (symmetric or asymmetric) if one adheres to the definition of “generalized forecast error” and/or changes the

probability measure.
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inflation in the 1980s, during Volker’s disinflation period. Clearly, traditional forecast unbiasedness

tests applied over the full sample do not reject forecast unbiasedness because under-predictions, on

average, cancel out over-predictions. Similar issues affect tests of forecast rationality in general.

Our test, instead, is capable of uncovering the lack of forecast rationality. Our findings are related

to Croushore (2006), who uses forecast rationality tests and scatterplots in sub-samples and finds

evidence of lack of forecast rationality in the Livingston and SPF surveys during the 1970s, but

no evidence when considering a sample up to 2004. Our findings are also related to Sinclair et al.

(2010), who similarly find systematic errors in Fed’s forecasts using other techniques. Furthermore,

our test uncovers that the informational advantage of the Fed over private sectors’ forecasts, while

confirmed in the data, has decreased over time.5

It is important to consider the trade-offs between our tests and the existing tests for forecast

rationality. As our Monte Carlo simulations show, the test is capable of signalling lack of forecast

rationality even if it is present in a sub-sample and therefore has higher power relative to the

existing tests in these cases; however, because the test is implemented in rolling windows over the

out-of-sample period, the number of observations used to implement the test is less than the total

number of forecasts, thus its power may be lower than that of existing tests in small samples when

there are no instabilities in the data.

The paper is structured as follows. Section 2 discusses the motivation that inspired the de-

velopment of the techniques proposed in this paper, while Section 3 presents the econometric

methodology. Sections 4 and 5 respectively present the results in the general framework and in

special cases that are very relevant in practice. Section 6 studies the size and power of our “Fluctu-

ation Rationality” test in small samples, while Section 7 discusses the empirical applications. The

last section concludes.

2 Motivation

In a very influential paper, Romer and Romer (2000) analyzed the properties of forecasts of US

inflation made by the Federal Reserve Board as well as by several private institutions. Their goal

was to evaluate whether the forecasts were rational, that is, whether they were unbiased and efficient

by using standard Mincer and Zarnowitz’s (1969) tests. Based on their empirical analysis, they

find no evidence against the rationality of the Federal Reserve Board’s staff forecasts. Given that

the forecasts are ultimately used by the central bank in guiding monetary policy, it is important

that they are unbiased and efficient.

To motivate the methodologies developed in this paper, consider Figure 1. The figure reports

two-quarter-ahead forecasts of US inflation made by several institutions. The dashed line reports

5This evidence is consistent with that in Gamber and Smith (2009).
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the forecasts made by the Federal Reserve Board; the dotted line reports the forecasts made by

the Blue Chip Economic Indicator and the dashed and dotted line reports forecasts made by the

Survey of Professional Forecasters. These forecasts are discussed in detail in Section 7. Note that

all forecasts under-predict inflation in the 1970s, a time period where the economy was constantly

subject to unforecastable oil price shocks, which unexpectedly increased inflation relative to what

forecasters predicted (see Croushore, 2006). Also, the forecasts constantly over-predict inflation in

the 1980s and 1990s, a time period where the monetary authority was constantly fighting inflation.

The over-prediction might be due to the fact that Greenspan’s policy turned out to be tougher

than what forecasters anticipated. In addition, forecasts do poorly in the late 1990s: it is possible

that they turned out to be upwardly biased because forecasters underestimated the growth rate

of potential output or the disinflationary forces caused by the growth in Chinese imports. Thus,

overall the forecasts appear not to be unbiased, nor rational: they under-predict the target in the

first part of the sample, and over-predict it in the second part of the sample. We will investigate

whether that is the case using formal statistical tests that we propose.

If the forecasts are biased, then, why did Romer and Romer (2000) conclude that the forecasts

were unbiased? They applied their test over the full sample, which comprises periods of over-

prediction as well as under-prediction. Thus, on average, the forecasts are unbiased. However, they

may not be systematically so.

The goal of this paper is to develop techniques to help researchers detect situation where

forecasts are not rational nor, in general, optimal, but the lack of rationality appears only in sub-

samples of the data or presents itself in an unstable fashion. In fact, existing tests, that are based on

stationarity assumptions under the alternative, should not be used in the presence of instabilities:

they could lead to the wrong conclusion, as in the empirical example considered here.

3 The Econometric Framework

The main objective of this paper is to test whether the h−step ahead (h > 0), out-of-sample

direct forecasts for the variable yt, which we assume to be a scalar, are optimal. We assume

that the forecasts are based on a model that is characterized by the (k × 1) parameter vector γ.

The forecasts are obtained by dividing the sample of size (T + h) observations into an in-sample

portion of size R and an out-of-sample portion of size P , such that R+ P = T + h. The sequence

of P out-of-sample forecast errors depends on the realizations of the forecasted variable and on

the in-sample parameter estimates, γ̂t,R. According to usual forecasting practices, we assume that

these parameters are estimated in either one of two ways: (i) re-estimated at each t = R, ..., T

over a window of R observations including data indexed t − R + 1, ..., t (rolling scheme); or (ii)

re-estimated at each t = R, ..., T over a window of t observations including data indexed 1, ..., t

5



(recursive scheme).

Let the forecast error associated with the h-step-ahead forecast made at time t be denoted

by vt+h(γ̂t,R). For example, in a simple linear regression model with h-period lagged (k × 1)

vector of regressors xt where Etyt+h = x′tγ, the forecast at time t is yt+h|t = x′tγ̂t,R and we have

vt+h(γ̂t,R) = yt+h − x′tγ̂t,R.

We focus on testing for forecast rationality in the framework developed by West and McCracken

(1998). Consider the general regression:

vt+h(γ̂t,R) = ĝ′t · θ + ηt+h, t = R, ..., T, (1)

where ĝt ≡ gt(γ̂t,R) is an (ℓ× 1) vector function of period t data (which can possibly be a function

of the estimator γ̂t,R – see examples below), θ is an (ℓ× 1) parameter vector, and vt+h (γ̂t,R) is the

estimated forecast error. West and McCracken (1998) focus on testing the null hypothesis:

H0 : θ = θ0 vs. HA : θ ̸= θ0, where θ0 = 0. (2)

Let θ̂P denote the estimate of θ in regression (1). Consider the following Wald test:

WP = P
(
θ̂P − θ0

)′
V̂ −1
θ,P

(
θ̂P − θ0

)
, (3)

where V̂θ,P is a consistent estimate of the long run variance of
√
P θ̂P . West and McCracken (1998)

show that it is important to correct the estimate of the variance by parameter estimation error in

order to estimate the long run variance consistently (cfr. their Theorem 4.1). We report the exact

formula for West and McCracken’s (1998) case, V̂θ,P , at the end of Section 4.

The framework in equation (1) is quite general and includes the following leading cases:

(i) forecast unbiasedness tests, where ĝt = 1;

(ii) forecast efficiency, where ĝt = yt+h|t.

(iii) forecast rationality (Mincer and Zarnowitz, 1969), where ĝt = [1 yt+h|t], and typically a

researcher is interested in testing whether either or all regressors are insignificant; in general, ĝt

may also contain any other variable known at time t which was not included in the forecasting

model;

(iv) forecast encompassing tests, where ĝt is the forecast of the encompassed model;

(v) serial uncorrelation tests, where ĝt = vt(γ̂t−h,R).

We refer to all these tests under the maintained assumption that θ0 = 0 as “tests for forecast

rationality.” The zero restriction on the parameter under the null hypothesis ensures that the

forecast errors are truly unpredictable given the information set available at the time when the

forecast is made.

Our main interest is testing forecast optimality in the presence of instabilities. In fact, in the

presence of instabilities, tests that focus on the average out-of-sample performance of a model may
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be misleading, as they may average out instabilities. Instead, we consider the following rolling

regression approach. Let θ̂j be the parameter estimate in regression (1) computed at time j over

rolling windows of size m.6 That is, θ̂j is sequentially estimated in regression (1) for j = R+m, ..., T

using the most recent m observations.7 Also, let the Wald test in the corresponding regressions be

defined as:

Wj,m = mθ̂′j V̂ −1
θ θ̂j , for j = R+m, ..., T , (4)

where, for example, in some special cases (such as forecast unbiasedness or efficiency), V̂θ is a HAC

estimator of the asymptotic variance of the parameter estimates in the rolling windows obtained

as in West and McCracken (1998), that is, implemented by replacing P in their notation with m.8

Our proposed “Fluctuation Rationality” test is:

maxj∈{R+m,...,T}Wj,m,

which we use to test the null hypothesis:9

H0 : θj = θ0 vs. HA : θj ̸= θ0, ∀ j = R+m, ..., T, (5)

where θ0 = 0 and θj is the true parameter value.

4 General Results

Let the (k × 1) true parameter vector be denoted by γ∗, vt+h ≡ vt+h (γ
∗) , ft+h (γ̂t,R) ≡ ĝtvt+h(γ̂t,R)

(an (ℓ× 1) vector), gt ≡ gt (γ
∗), ft+h ≡ gtvt+h = ft+h (γ

∗) , ft+h,γ ≡ ∂ft+h(γ
∗)

∂γ , F ≡ E
(
∂ft+h(γ

∗)
∂γ

)
(an (ℓ× k) matrix).

We make the following assumptions:

Assumption 1:

(i) The estimate γ̂t,R satisfies γ̂t,R − γ∗ = BtHt where B t is (k × q) matrix and H t is (q × 1)

with (a) Bt →
as

B with rank k; (b) H t = t−1
t∑

r=1
hr (γ

∗) for the recursive and H t = R−1
t∑

r=t−R+1

hr (γ
∗)

for the rolling estimation methods, for a (q × 1) orthogonality condition hr (γ
∗); (c) E(hr (γ

∗)) = 0

and h(.) is measurable and continuously differentiable.

6We removed the dependence of θ̂j from m (m is the same for all θ̂js).
7E.g., θ̂R+m is estimated in equation (1) using vR+h(γ̂R,R), ..., vR+m+h(γ̂R+m,R); θ̂R+m+1 is estimated in

equation (1) using vR+1+h(γ̂R+1,R), ..., vR+m+h+1(γ̂R+m+1,R); ... and θ̂T is estimated in equation (1) using

vT−m+1+h(γ̂T−m+1,R), ..., vT+h(γ̂T,R).
8Alternatively, one could design a Wald test similar to the One-time Reversal test in Giacomini and Rossi (2010),

which may have more power against one-time breaks in θ; its derivation follows directly from our results.
9In the construction of the test we associate the end of period date of the fixed window m with the parameter

estimate θ̂j . In fact, that need not necessarily be the case. If one prefers, one can choose to associate the mid-period

date of the fixed window m with the parameter estimate, for example.
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(ii) In some neighborhood N around γ∗, and with probability 1, vt (γ) and gt (γ) are measurable

and twice continuously differentiable, and E(gtg
′
t) ≡ G is an (ℓ× ℓ) of rank ℓ.

Assumption 2:

(i) limT→∞supj m−1/2
j∑

t=j−m+1
(ft+h,γ − F )BHt = op (1) ;

(ii) limT→∞supj m−1/2F
j∑

t=j−m+1
(Bt −B)Ht = op (1) ;

(iii) limT→∞supj m−1/2
j∑

t=j−m+1
(ft+h,γ − F ) (Bt −B)Ht = op (1) ;

(iv) limT→∞supj

(m−1
j∑

t=j−m+1
gtg

′
t

)−1

−G−1

 = op (1) .

(v) There is a finite constant D such that, for all t, supγ∈N |∂2vt(γ)/∂γ∂γ
′| < mt for a measurable

mt such that E(m4
t ) < D and the same holds when vt is replaced by any element of gt.

Assumption 3. m → ∞, R → ∞ as T → ∞, and limT→∞m/T = µ ∈ (0, 1), limT→∞R/T =

ρ ∈ (0, 1) ; let j = [τT ], t = [sT ], where [.] denotes the integer function and τ ∈ (0, 1) , s ∈ (0, 1) ,

h < ∞.

Assumption 1(i) allows the in-sample parameter estimates to be obtained by general estimation

procedures such as Ordinary Least Squares (OLS), maximum likelihood, and GMM, for example.

Assumption 1(ii) imposes differentiability and full rank conditions. Assumption 2 guarantees that

the remainder of the mean value expansion is asymptotically irrelevant. Assumption 3 requires R

and m to be large relative to the sample size (in particular, relative to the finite horizon, h), be

some fixed proportion of the total sample size and ensures the consistency of the out-of-sample test

statistics.10 The assumption accommodates both rolling and recursive estimation schemes.

The Not-for-Publication Appendix shows that, under Assumptions 1, 2 and 3, we have:

m1/2θ̂j = G−1

(
T

m

)1/2

[Iℓ, FB]

{
1√
T

j∑
t=R

(
ft+h

Ht

)
− 1√

T

j−m∑
t=R

(
ft+h

Ht

)}
+Aj , (6)

where Aj is a remainder term such that limT→∞supjAj = op (1) and Iℓ is an (ℓ× ℓ) identity matrix.

Let
j∑

t=R

Ht =
j∑

t=1
aR,t,jht, where direct calculations show that:

(i) for the recursive estimation scheme

(
Ht = t−1

t∑
r=1

hr

)
:

aR,t,j =
(
R−1 + ...+ j−1

)
· 1 (t ≤ R) +

(
t−1 + ...+ j−1

)
· 1 (R < t ≤ j) ; (7)

10This assumption is not restrictive: θ̂j can be estimated in recursive windows. The analytical calculations for this

case are already provided in this paper. Critical values for select cases are reported in footnote 13.
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(ii) for the rolling estimation scheme

(
Ht = R−1

t∑
r=t−R+1

hr

)
:

if j− R ≥ R :

aR,t,j =

(
1

R

)
{t · 1 (t ≤ R) +R · 1 (R < t ≤ j −R) (8)

+ (j − t) · 1 (j −R < t ≤ j)};

whereas if j− R < R :

aR,t,j =

(
1

R

)
{t · 1 (t < j −R) + (j −R) · 1 (j −R ≤ t ≤ R) (9)

+ (j − t) · 1 (R < t ≤ j)}.

In addition, for all estimation schemes let bR,j,t = 1 (t > R).

Let Iq be a (q × q) identity matrix. It follows from equations (7), (8) and (9) and bR,j,t =

1 (t > R) that

1√
T

j∑
t=R

(
ft+h

Ht

)
= 1√

T

j∑
t=1

(
bR,t,j · Iℓ 0

0 aR,t,j · Iq

)(
ft+h

ht

)
.

We further approximate bR,t,j and aR,t,j as follows. Let bR,t,j = 1 (t/T ≥ R/T ) ≃ 1 (s ≥ ρ) ≡
σf (s) and

(i) for recursive: given equation (7), we follow West (1996) to show that

aR,t,j ≃
(∫ j

R

1

k
dk

)
· 1 (t ≤ R) +

(∫ j

t

1

k
dk

)
· 1 (R < t ≤ j)

Consider r = k/T . Accordingly,

aR,t,j ≃
(∫ τ

ρ

1

r
dr

)
· 1 (s ≤ ρ) +

(∫ τ

s

1

r
dr

)
· 1 (ρ < s ≤ τ)

= [ln (τ)− ln (ρ)] · 1 (s ≤ ρ) + [ln (τ)− ln (s)] · 1 (ρ < s ≤ τ) ≡ σh (s, τ) ; (10)

(ii) for rolling: when j −R ≥ R, we can re-write equation (8) as

aR,t,j =
t

R
· 1
(

t

T
≤ R

T

)
+

R

R
· 1
(
R

T
<

t

T
≤ j −R

T

)
(11)

+
j − t

R
· 1
(
j −R

T
<

t

T
≤ j

T

)
;

thus, when τ− ρ ≥ ρ,

σh(s, τ) =
s

ρ
· 1 (s ≤ ρ) + 1 · 1 (ρ < s ≤ τ − ρ) +

τ − s

ρ
· 1 (τ − ρ < s ≤ τ) . (12)
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A similar argument shows that when τ− ρ < ρ, equation (9) can be approximated as

σh(s, τ) =
s

ρ
· 1 (s ≤ τ − ρ) +

τ − ρ

ρ
· 1 (τ − ρ < s ≤ ρ) (13)

+
τ − s

ρ
· 1 (ρ < s ≤ τ) .

The following table summarizes the approximations we use for the weights aR,t,j , bR,t,j :

Approximation for the weights aR,t,j , bR,t,j

Weights Estimation Scheme Approximation

bR,t,j All σf (s) ≡ 1 (s ≥ ρ)

aR,t,j Recursive σh (s, τ) ≡ [ln (τ)− ln (ρ)] · 1 (s ≤ ρ)

+ [ln (τ)− ln (s)] · 1 (ρ < s ≤ τ)

Rolling scheme:

(a) τ− ρ ≥ ρ σh (s, τ) ≡ s
ρ · 1 (s ≤ ρ) + 1 · 1 (ρ < s ≤ τ − ρ)

+ τ−s
ρ · 1 (τ − ρ < s ≤ τ)

(b) τ− ρ < ρ σh (s, τ) ≡ s
ρ · 1 (s ≤ τ − ρ) + τ−ρ

ρ · 1 (τ − ρ < s ≤ ρ)

+ τ−s
ρ · 1 (ρ < s ≤ τ) .

Define ξj =
j∑

t=1

(
ft+h

ht

)
and the stochastic integral of interest as in Hansen (1992, p. 491):

∫ τ

0

(
σf (s) · Iℓ 0

0 σh (s, τ) · Iq

)
dξT =

1√
T

j∑
t=1

(
bR,t,j · Iℓ 0

0 aR,t,j · Iq

)(
ft+h

ht

)
.

The following assumption is based on Hansen (1992) and allows us to derive the asymptotic

distribution of our parameter of interest, θ̂j .

Assumption 4. For some p > β > 2,
(
f ′
t+h, h

′
t

)′
is zero mean, strong mixing with mixing coeffi-

cients αm of size -pβ/ (p− β) and supt≥1||
(
f ′
t+h, h

′
t

)′ ||p = C < ∞. In addition, lim
T→∞

T−1E (ξT ξ
′
T ) =

S ≡

(
Sff Sfh

S′
fh Shh

)
is an (l + q)× (l + q) positive definite and finite matrix as T → ∞.

Proposition 1 (Preliminary Asymptotic Result) Under Assumptions 1-4 and T−1/2ξT → ξ

in DR(ℓ+q) [0, 1]:

1√
T

j∑
t=1

(
bR,t,j · Iℓ 0

0 aR,t,j · Iq

)(
ft+h

ht

)
⇒
∫ τ

0
Ω(s, τ)1/2 dξ (s) ,

10



where ξ (s) = S1/2Bℓ+q (s) , Bℓ+q (s) is an (ℓ+ q) × 1 vector of independent standard Brownian

motions, D denotes the space of cadlag functions, “⇒” denotes weak convergence with respect to

the Skorohod metric, and Ω(s, τ)1/2 ≡

(
σf (s) · Iℓ 0

0 σh (s, τ) · Iq

)
.

The proof of the proposition builds on Cavaliere (2005) and is provided in Rossi and Sekhposyan

(2014). We use the result in Proposition 1 to derive the asymptotic distribution of the parameter

estimate, θ̂j , in the next Proposition.

Proposition 2 (Asymptotic Distribution of θ̂j) Under Assumptions 1-4 and T−1/2ξT → ξ in

DR(ℓ+q) [0, 1]:

m1/2 θ̂j ⇒
∫ τ

0
ω̃ (s, τ) dBℓ+q (s)−

∫ τ−µ

0
ω̃ (s, τ − µ) dBℓ+q (s) = Bω̃ (τ)− Bω̃ (τ − µ) (14)

=
d

∫ τ

0
ω (s, τ) dBℓ+q (s) ≡ Bω (τ) = Bℓ

(∫ τ

0
ω (s, τ)ω (s, τ)′ ds

)
, (15)

where

ω̃ (s, τ) = µ− 1
2G−1 [Iℓ, FB] Ω (s, τ)1/2 S1/2, (16)

ω (s, τ) = µ− 1
2G−1 [Iℓ, FB] {

[
Ω(s, τ)1/2 − Ω(s, τ − µ)1/2

]
· 1 (s ≤ τ − µ) (17)

+ Ω (s, τ)1/2 · 1 (τ − µ < s ≤ τ) }S1/2,

Bℓ+q (s) is an (ℓ+ q)× 1 vector of independent standard Brownian motions and =
d
denotes equality

in distribution.

Note that both Bω (τ) as well as Bω̃ (τ) are (ℓ× 1) Gaussian processes with time-varying vari-

ances. Bω (τ) is Gaussian with quadratic variation
∫ τ
0 ω (s, τ)ω (s, τ)′ ds.11 Similarly, Bω̃ (τ) ≡

Bℓ

(∫ τ
0 ω̃ (s, τ) ω̃ (s, τ)′ ds

)
is Gaussian with quadratic variation

∫ τ
0 ω̃ (s, τ) ω̃ (s, τ)′ ds. The following

Proposition calculates the quadratic variation of Bω (τ) and Bω̃ (τ) for the rolling and the recursive

estimation schemes.

Proposition 3 (Calculation of
∫ τ
0 ω (s, τ)ω (s, τ)′ ds )∫ τ

0
ω (s, τ)ω (s, τ)′ ds = µ−1G−1

{ (∫ τ
τ−µ σ

2
f (s) ds

)
Sff +

(∫ τ
τ−µ σf (s)σh (s, τ) ds

)
(
FBSfh + SfhB

′F ′)+ ∫ τ

0

[
(σh (s, τ)− σh (s, τ − µ))2 · 1 (s ≤ τ − µ)

+σ2
h (s, τ) · 1 (τ − µ ≤ s ≤ τ)

]
dsFBShhB

′F ′}G−1,

11We eliminated the vector dimension in the notation for Bω (·) , Bω̃ (·) as they are always dimension (ℓ× 1).
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where

(i)
∫ τ
τ−µ σ

2
f (s) ds = µ for both rolling and recursive cases;

(ii) recursive: let π̃ ≡ µ/ (τ − µ) ;∫ τ
τ−µ σf (s)σh (s, τ) ds = µ

[
1− π̃−1 ln (1 + π̃)

]
and∫ τ

0

[
(σh (s, τ)− σh (s, τ − µ))2 · 1 (s ≤ τ − µ) + σ2

h (s, τ) · 1 (τ − µ ≤ s < τ)
]
ds = 2µ

[
1− π̃−1 ln (1 + π̃)

]
;

(iii) rolling: let π† ≡ µ
ρ ;

(a) if µ ≥ ρ, then∫ τ
τ−µ σf (s)σh (s, τ) ds = µ

(
1− 1

2π†

)
and∫ τ

0

[
(σh (s, τ)− σh (s, τ − µ))2 · 1 (s ≤ τ − µ) + σ2

h (s, τ) · 1 (τ − µ ≤ s < τ)
]
ds = µ

(
1− 1

3π†

)
;

(b) if µ < ρ, then∫ τ
τ−µ σf (s)σh (s, τ) ds =

1
2µπ

† and∫ τ
0

[
(σh (s, τ)− σh (s, τ − µ))2 · 1 (s ≤ τ − µ) + σ2

h (s, τ) · 1 (τ − µ ≤ s < τ)
]
ds = µπ† (1− 1

3π
†).

Proposition 4 (Calculation of
∫ τ
0 ω̃ (s, τ) ω̃ (s, τ)′ ds )∫ τ

0
ω̃ (s, τ) ω̃ (s, τ)′ ds = µ−1G−1

{(∫ τ

0
σ2
f (s) ds

)
Sff +

(∫ τ

0
σf (s)σh (s, τ) ds

)
×

×
(
FBSfh + SfhB

′F ′)+ (∫ τ

0
σ2
h (s, τ) ds

)
FBShhB

′F ′
}
G−1,

where

(i)
∫ τ
0 σ2

f (s) ds = (τ − ρ) for both rolling and recursive cases;

(ii) recursive:∫ τ
τ−µ σh (s, τ)σf (s) ds = (τ − ρ)

(
1− ρ

τ−ρ ln
(
τ
ρ

))
and∫ τ

0 σ2
h (s, τ) ds = 2(τ − ρ)

(
1− ρ

τ−ρ ln
(
τ
ρ

))
;

(iii) rolling:

(a) if τ − ρ ≥ ρ, then∫ τ
0 σf (s)σh (s, τ) ds =

(
τ − 3

2ρ
)
and

∫ τ
0 σ2

h (s) ds =
(
τ − 4

3ρ
)
;

(b) if τ − ρ < ρ, then∫ τ
0 σf (s)σh (s, τ) ds =

1
2ρ (τ − ρ)2 and

∫ τ
0 σ2

h (s) ds =
1

3ρ2
(τ − ρ)2 (4ρ− τ).

The next Proposition discusses the asymptotic distribution of the Wj,m test statistic presented

in equation (4).

Theorem 5 (Main Proposition ) Under Assumption 1-4,

Wj,m = mθ̂′j V −1
θ,τ θ̂j

⇒
[
Bℓ

(∫ τ

0
ω (s, τ)ω (s, τ)′ ds

)]′
V −1
θ,τ

[
Bℓ

(∫ τ

0
ω (s, τ)ω (s, τ)′ ds

)]
, (18)
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where

Vθ,τ = Avar
(
m1/2θ̂j

)
(19)

= G−1 [Iℓ, FB]Avar

 1√
m

j∑
t=j−m+1

(
ft+h

Ht

) [Iℓ, FB]′G−1

=

∫ τ

0
ω (s, τ)ω (s, τ)′ ds, (20)

j = [τT ] , m = [µT ] and Bℓ (·) is a standard ℓ-dimensional Brownian motion. Let θj be the true

parameter value. We reject the null hypothesis:

H0 : θj = θ0 , θ0 = 0 for all j = R+m, ..., T (21)

if maxj∈{R+m,...,T} Wj,m > κα,ℓ, where κα,ℓ are the critical values at the 100α% significance level

that can be simulated for given values of µ, ℓ, G, F, B and S.

Vθ,τ can be estimated using Proposition 3 and replacing the population values of Sff, Sfh,

Shh with a consistent estimate. For example, one could use Newey and West’s (1987) covariance

estimator of long run variance of
{(

f ′
t+h, h

′
t

)′}T

t=R
.

The asymptotic distribution of the test statistic Wj,m is non-standard and depends on nuisance

parameters. We obtain its critical values, κα,ℓ, via Monte Carlo simulations by the following steps:

1. Simulate Bℓ

(∫ τ
0 ω̃ (s, τ) ω̃ (s, τ)′ ds

)
by using the approximation

√
T

j∑
t=1

ω̃
(

t
T ,

j
T

)
ϑℓ, where ϑℓ

is an (ℓ× 1) vector of independent standard Normal random variables;

2. Simulate Bℓ

(∫ τ−µ
0 ω̃ (s, τ) ω̃ (s, τ)′ ds

)
similarly by

√
T

j−m∑
t=1

ω̃
(

t
T ,

j−m
T

)
ϑℓ;

12

3. Then, we obtain

Bℓ

(∫ τ

0
ω (s, τ)ω (s, τ)′ ds

)
= Bℓ

(∫ τ

0
ω̃ (s, τ) ω̃ (s, τ)′ ds

)
−Bℓ

(∫ τ−µ

0
ω̃ (s, τ) ω̃ (s, τ)′ ds

)
;

4. Finally, conditional on the estimated value of Vθ,τ obtained by equation (19), we use Propo-

sition 4 to simulate the Wj,m test statistic by using equation (18);

5. The critical values at significance level α can be obtained by the (1− α) th quantile of the

simulated distribution of Wj,m. Note that when S is full rank, S1/2 can be calculated as the

Cholesky factor of S; when S is rank deficient, one can use a singular value decomposition in

Rao (Section 8a.4) to approximate ω̃ (t/T, j/T ).

12It is important that the random variable ϑℓ used to simulate the two Brownian motions is the same.
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The case of a linear regression model in equation (3) is the same as that considered in West

and McCracken (1998). Note the similarity between the results in Proposition (3) and West and

McCracken’s (1998) variance. The latter define the variance in exactly the same way, except that

in their case m = P, π = limT→∞ (P/R) and τ = 1. Consequently, by letting µ = π (1 + π)−1 ,

ρ = (1 + π)−1 and (1− ρ) = π (1 + π)−1 in Proposition 3 we recover their results:13

(i) recursive scheme:

Vθ,P = G−1
{
Sff +

(
1− π−1 ln (1 + π)

) [
FBS′

fh +B′F ′Sfh

]
+ 2

(
1− π−1 ln ((1 + π))

)
FBShhB

′F ′}G−1;

(ii) rolling scheme:

Vθ,P =

G−1
{
Sff +

(
1− 1

2π

) [
FBS′

fh +B′F ′Sfh

]
−
(
1− 1

3π

)
FBShhF

′B′
}
G−1; π ≥ 1

G−1
{
Sff + π

2

[
FBS′

fh +B′F ′Sfh

]
+
(
π − π2

3

)
FBShhF

′B′
}
G−1; π < 1.

The difference between West and McCracken (1998) and our approach is that we aim at testing

forecast rationality at each point in the out-of-sample period, based on rolling window averages,

while they focus on optimality on average over the whole out-of-sample portion of the data. In

the case of West and McCracken (1998), the tests take into account parameter estimation error by

simple adjustment factors in the variance, which result in tests with asymptotic distributions that

are nuisance parameter free. In our case, instead, we need to adjust the asymptotic distribution

to take into account the parameter estimation error, which induces a time-varying variance; under

very general conditions, this implies that the critical values depend on the data generating process

and need to be simulated specifically for the individual application at hand.

5 Forecast Unbiasedness, Efficiency Tests, and Survey Forecasts

The general results presented in the previous section simplify considerably in two cases important

for practitioners. The first important special case is when parameter estimation error is irrelevant

(F = 0). This may be often of interest in practice when the model that generated the forecasts is

not available and, thus, the correction for parameter estimation error is not applicable. Relevant

examples are survey forecasts and judgemental forecasts produced by central banks; for instance,

the Greenbook forecasts by the Federal Reserve Board or private sector forecasts such as those

produced by the Blue Chip Economic Indicators. In addition, if a researcher were to consider a

null hypothesis on the forecast errors evaluated at the estimated models’ parameter, instead of at

the pseudo-true parameter values, the asymptotic distribution of the test statistic would similarly

be nuisance parameter free. For a discussion and implementation, see Rossi (2012, 2013).

13Recall that West and McCracken’s (1998) test statistic is obtained by rescaling by P 1/2 rather than T 1/2 as

shown in equation (3).
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Proposition 6 (Special Case I: Irrelevant Parameter Estimation Error) Under the con-

dition F = 0, parameter estimation error becomes irrelevant and
∫ τ
0 ω (s, τ)ω (s, τ)′ ds becomes

G−1SffG
−1 and

∫ τ
0 ω̃ (s, τ) ω̃ (s, τ)′ ds = (τ−ρ)

µ G−1SffG
−1 for all estimation schemes.

The second special case involves testing for forecast unbiasedness and efficiency using t-tests

under general conditions, as well as several other tests under more specific assumptions. As dis-

cussed in West and McCracken (1998) Corollary 5, in such cases a special condition holds, which

considerably simplifies the asymptotic distributions of our test statistic. As in West and McCracken

(1998), the results in the special case below also hold for encompassing and serial correlation tests

when the errors are conditionally homoskedastic.

Proposition 7 (Special Case II: Forecast Unbiasedness and Efficiency Tests) Under the

condition:

Sff = −1

2
(FBShf + SfhB

′F ′) = FBShhB
′F ′, (22)∫ τ

0 ω̃ (s, τ) ω̃ (s, τ)′ ds in Proposition 4 becomes:

(i) recursive case: τ−ρ
µ G−1SffG

−1;

(ii) rolling case:

(a) 1
µ
2ρ
3 G

−1SffG
−1, if τ − ρ ≥ ρ; and

(b) (τ−ρ)
µ

(
1− (τ−ρ)2

3ρ2

)
G−1SffG

−1, if τ − ρ < ρ.

Furthermore,
∫ τ
0 ω (s, τ)ω (s, τ)′ ds in Proposition 3 becomes λG−1SffG

−1, where:

(i’) recursive case: λ = 1;

(ii’) rolling case: let π† ≡ µ
ρ ; then,

(a) λ = 2
3π† , if µ ≥ ρ; and

(b) λ =
(
1− 1

3

(
π†)2) , if µ < ρ.

Note that, when either Proposition 6 or 7 holds, Vθ,τ =
∫ τ
0 ω (s, τ)ω (s, τ)′ ds does not depend

on τ ; thus, the variance is not time-varying. The next proposition shows that, in these special

cases, the distribution of the test statistic simplifies and its critical values can be tabulated.

Theorem 8 (Main Proposition in Special Cases) (a) Under Assumption 1-4 and Condition

(22), we have:

Wj,m ⇒ Wτ,µ, (23)

where Wτ,µ is: (i) Recursive estimation:14

Wτ,µ = µ−1 [Bℓ (τ − ρ)− Bℓ (τ − ρ− µ)]′ [Bℓ (τ − ρ)− Bℓ (τ − ρ− µ)] , (24)

14If one implements the test by recursively estimating θ̂j as explained in Footnote 10 (that is, θ̂j is estimated sequen-

tially in regression (1) for j = R+m, ..., T using all past j−R observations), then the asymptotic distribution of the
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(ii) Rolling estimation:

Wτ,µ = µ−1

{(
2

3π†

)
· 1 (µ ≥ ρ) +

(
1− 1

3

(
π†
)2)

· 1 (µ < ρ)

}−1

× (25)[{
Bℓ

(
(τ − ρ)

(
1− (τ − ρ)2

3ρ2

))
− Bℓ

(
(τ − µ− ρ)

(
1− (τ − µ− ρ)2

3ρ2

))}
· 1 (µ+ ρ ≤ τ < 2ρ)

+

{
Bℓ

(
2

3
ρ

)
− Bℓ

(
(τ − µ− ρ)

(
1− (τ − µ− ρ)2

3ρ2

))}
· 1 (2ρ < τ ≤ 2ρ+ µ)

]′
×
[{

Bℓ

(
(τ − ρ)

(
1− (τ − ρ)2

3ρ2

))
− Bℓ

(
(τ − µ− ρ)

(
1− (τ − µ− ρ)2

3ρ2

))}
· 1 (µ+ ρ ≤ τ < 2ρ)

+

{
Bℓ

(
2

3
ρ

)
− Bℓ

(
(τ − µ− ρ)

(
1− (τ − µ− ρ)2

3ρ2

))}
· 1 (2ρ < τ ≤ 2ρ+ µ)

]
.

(b) Furthermore, under Assumptions 1-4 and condition F = 0, equation (23) holds with

Wτ,µ = µ−1 [Bℓ (τ − ρ)− Bℓ (τ − ρ− µ)]′ [Bℓ (τ − ρ)− Bℓ (τ − ρ− µ)] . (26)

We reject the null hypothesis:

H0 : θj = θ0, θ0 = 0 for all j = R+m, ..., T (27)

if max
j∈{R+m,...,T} Wj,m > κα,ℓ, where κα,ℓ are the critical values at the 100α% significance level and

are reported for α = 0.05 in Table 1, Panel A for equations (24) and (26) and in Table 1, Panel B

for equation (25) for various combinations of ρ = R/T, µ = m/T and number of restrictions, ℓ.15

Under the special cases considered in Propositions 6 or 7, which are the ones more commonly

used in the literature, the critical values do not depend on the data generating process and can be

tabulated. More specifically, Theorem 8 shows that this is the case when either: (i) F = 0; or (ii)

when testing forecast unbiasedness and rationality via t-tests (that is, when concerned about mean

prediction errors and efficiency). Based on the considerations in West and McCracken (1998),

results similar to (ii) apply when testing encompassing and serial correlation with conditionally

homoskedastic errors. In these cases, our method results in an adjustment procedure similar to

Wald test (when the parameters are estimated recursively and θ is rescaled by
√
T ) is Wτ,µ = Bℓ (τ − ρ)′ Bℓ (τ − ρ).

The 5% critical values for supτ∈{ρ+µ,...,1} Wτ,µ when µ = 0.25, ρ = {0.3; 0.5} and l = 1(l = 2) are {3.3332; 2.3755}
({5.1071; 3.6248}), respectively.

15The critical values can be obtained by Monte Carlo simulation. The critical values at significance level 100α%

are such that Pr
{
supτ∈{ρ+µ,...,1} Wτ,µ > κα,ℓ

}
= α. Critical values at the 1% and 10% as well as for ℓ > 5 can be

found in a Not-for-Publication Appendix (Rossi and Sekhposyan, 2014).
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that of West and McCracken (1998), where the test statistics could be calculated similarly, by

substituting P in their notation with m of our notation, provided inference is conducted using the

critical values provided in this paper.16

Note that in the case of model-free forecasts, the only sample available to researchers is P : they

do not have an available R; therefore we define µ̃ such that m = [µ̃P ] (that is, we define m as a

fraction of the number of observations P , as opposed to being a fraction of the total sample size T ).

We provide a separate table of critical values (Table 1, Panel C) for the test statistic maxj̃∈{m,...,P}

Wj̃,m as discussed in the following Corollary.

Corollary 9 (Main Proposition for Survey and Model-Free Forecasts) Under Assumptions

1-4 and condition F = 0, the alternative test statistic

Wj̃,m = mθ̂′
j̃
V̂ −1
θ θ̂j̃ , for j̃ = m, ..., P ,

implemented over the sequence of P forecasts is such that:

max
j̃∈{m,...,P}

Wj̃,m =⇒ sup
τ̃∈{µ̃,...,1}

Wτ̃ ,µ̃, (28)

where τ̃ ≡ j̃/P, µ̃ ≡ m/P and

Wτ̃ ,µ̃ = µ−1 [Bℓ (τ̃)− Bℓ (τ̃ − µ̃)]′ [Bℓ (τ̃)− Bℓ (τ̃ − µ̃)] . (29)

We reject the null hypothesis:

H0 : θj = θ0, θ0 = 0 for all j̃ = m, ..., P (30)

if maxj̃∈{m,...,P} Wj̃,m > κα,ℓ, where κα,ℓ are the critical values at the 100α% significance level and

are reported in Table 1, Panel C for various values of µ̃ = m/P and number of restrictions, ℓ.

6 Monte Carlo Analysis

We study the small sample performance of the methods that we propose in a series of Monte Carlo

experiments inspired by West and McCracken (1998). Let the Data Generating Process (DGP) be:

yt = γyt−1 + εt, where γ = 0.5, εt ∼ iid(0, 1), and y0 is drawn from its unconditional distribution,

a normal with zero mean and variance
(
1− γ2

)−1
. In each sample, t = 1, ..., T + 1, we split

the data into T + 1 = P + R, and we use either a rolling or a recursive scheme to generate P

16While West and McCracken (1998) formally demonstrate that their condition holds for one-step-ahead forecasts,

conversations with the authors, as well as comments in their paper (p. 829) suggest that it holds for h > 1 as well.
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one-step ahead out-of-sample forecasts, yR+1|R, ..., yT+1|T . The forecasting model for the recursive

estimation scheme is yt+1|t = γ̂tyt, while for the rolling estimation scheme it is yt+1|t = γ̂0,t+ γ̂1,tyt.

The forecast errors are denoted by vt+1|t ≡ yt+1 − yt+1|t, for t = R, ..., T.17

First, we consider the size properties of our test and compare it to the “Traditional tests”

typically used in the literature. Consider the following regression model:

Etvt+1|t = θ0 + θ1Zt. (31)

The “Traditional tests” include testing:

(i) Zero mean prediction error (or forecast unbiasedness). We test whether the mean of the

sequence of forecast errors is zero. The test is implemented by a two-sided t-test for θ0 = 0 in

regression (31), where there are no regressors other than the constant. Let θ̂0 = P−1
T∑

t=R

vt+1|t

and σ̂2
θ0

= P−1
T∑

t=R

(
vt+1|t

)2
. We consider a t-test with West and McCracken’s (1998) variance

correction: tcα = P 1/2θ̂0σ̂
−1λ

−1/2
WM , where λWM = 1 for the recursive scheme and, for the rolling

scheme, λWM = 1− π2/3 when π < 1 and λWM = 2/ (3π) when π > 1.

(ii) Forecast efficiency. The test is implemented by a two-sided t-test for θ1 = 0 in the regression

(31), where Zt = yt+1|t, and a constant is included in the regression. Let θ̂1 be the OLS estimate of

the slope coefficient in the regression (31), and σ̂2
θ1

be its estimated standard error. We consider a

t-test that utilizes West and McCracken’s (1998) correction: tcθ1 = β̂σ̂−1
θ1

λ
−1/2
WM , for the same values

of λWM as in (i).

In addition, we consider our proposed “Fluctuation Rationality” test, equation (4), implemented

in rolling regressions over the out-of-sample period with a rolling window size m = 50. The estimate

of the asymptotic variance is obtained by using a simple homoskedastic covariance estimate of S,

as in West and McCracken (1998). The number of Monte Carlo replications is 1,000.

Table 2 reports results for the recursive and the rolling estimation schemes, respectively. Panel

A reports results for testing forecast unbiasedness and panel B for forecast efficiency. The tables

shows that the empirical rejection frequencies of our proposed tests (reported in the column labeled

“Fluctuation Test”) as well as those of the traditional tests (reported in the column labeled “Tradi-

tional Test”) are close to the nominal value except in very small sample sizes. The size distortions

in small samples are mild for the recursive scheme for both tests and for the rolling scheme for the

mean prediction error test, and a little bit larger for the rolling case in the efficiency test.18 In

17The advantage of using the same DGP as West and McCracken (1998) is that we can directly compare our results

to theirs. In addition, in order for Condition (22) to hold, one would need to include a constant in the estimation

equation for the rolling case. For a reference, see West and McCracken (1998), proof of Theorem 7.1.
18This result is consistent with West and McCracken (1998). As a referee pointed out, it might be possible that the

finite sample correction in Giacomini and Rossi (2009) could improve the size distortions in our context. We leave

this for future research.
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general, for the small samples, i.e. R ≤ 100, the recursive estimation scheme results in a better

sized tests than the rolling estimation scheme.

In order to evaluate the power of our test in the presence of time variation, we consider ex-

periments based on three DGPs. All DGPs are based on the model: yt = γyt−1 + εt + bt, where

γ = 0.5, εt ∼ iid(0, 1), y0 is drawn from the unconditional distribution of yt when bt = 0. In DGP

A (labeled as “A. Non-stationary”), bt = b · 1(1 < t ≤ 345) − b · 1(345 < t ≤ T + 1). In DGP B

(labeled as “B. Non-stationary”), bt = 0 · b · 1(1 < t ≤ 345) + 2 · b · 1(345 < t ≤ T + 1). DGP

C (labeled as “C. Stationary”) considers bt = b, for all t. Furthermore, b = {0, 0.1, ..., 1} for the

power exercises in the case of mean prediction error and b = {0, 0.5, ..., 5} for the power exercises

in the case of efficiency. Predictions are based on an AR(1) model. DGP A is used to assess the

power of the “Fluctuation Rationality” test. DGP B is a non-stationary DGP where traditional

tests can also have some power. DGP C is a stationary model that we use to study the power loss

from using our test that is robust in the presence of instabilities. The power loss occurs since our

test uses fewer observations than the traditional tests, i.e. m < P . In all cases parameters are

estimated with a recursive scheme, and T = 400, R = 300 and m = 60.

The power comparisons are reported in Table 3. The table shows that, in DGP A, the traditional

tests do not have power to reject the null hypothesis, and, in fact, their rejection frequencies

approach zero under the alternative hypothesis, whereas our proposed tests do have substantial

power (see panel A. Non-stationary). In DGP B, the traditional test has some power, although our

test has a higher power to detect lack of rationality (see panel B. Non-stationary). Finally, DGP C

illustrates the loss of power in our test relative to the traditional test when there are no instabilities

in the data (see panel C. Stationary). Clearly, there is a trade-off between the proposed tests and

the traditional ones: if one is certain that the forecast environment is stable, the traditional tests

would have more power to detect lack of rationality in small samples; however, when the forecast

environment is unstable, the traditional tests, even asymptotically, may have no power at all in

certain situations, while our proposed test would have power.

7 Are Federal Reserve and Private Sector’s Forecasts Rational?

The quality of private sector’s forecasts relative to the internal forecasts of the Federal Reserve has

been frequently considered in the literature. As anticipated in Section 2, in important contribution,

Romer and Romer (2000) showed that the Federal Reserve has more information relative to the

private sector when forecasting inflation. Hence, it would be optimal for a third party with access

to both forecasts to put all the weight on the forecasts provided by the Federal Reserve and zero

weight on the ones provided by the commercial forecasters.

We revisit the existing empirical evidence from two points of view. First, we consider the
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rationality of private sector’s as well as the Federal Reserve’s Greenbook forecasts, as in Romer

and Romer (2000), Faust and Wright (2010), Patton and Timmermann (2012) and Croushore

(2012), among others. These papers have found that forecast rationality tests for the various,

competing inflation forecasts are sensitive to the sub-sample period used for forecast evaluation.

The novelty of our approach is to study whether forecast rationality holds by using our “Fluctuation

Rationality” test, which is more powerful in the presence of instabilities. One of the advantages of

our approach is that it does not require researchers to know or impose a sub-sample date a-priori.

Second, we evaluate whether Romer and Romer’s (2000) finding that Federal Reserve forecasts are

superior to private sectors’ forecasts continues to hold when we allow for instabilities.

We consider the Federal Reserve’s inflation forecasts provided in the Greenbook and compare

them with two commercial forecasts: the Blue Chip Economic Indicators (BCEI) and the Survey

of Professional Forecasters (SPF). In what follows, we describe the data from each of the sources.

Greenbook forecasts are made by the staff of the Federal Reserve Board of Governors prior to

each Federal Open Market Committee (FOMC) meeting. The Greenbook provides quarterly fore-

casts for a variety of economic indicators and for several forecast horizons (from contemporaneous

up to nine quarters) under a maintained assumption about monetary policy. We consider only

forecasts up to five quarters to ensure a sample large enough for inference. We focus on inflation

forecasts provided by the Greenbook, which are measured by (annualized) quarter-over-quarter

GNP deflator growth rates from 1965 to 1991 and by (annualized) quarter-over-quarter GDP defla-

tor growth rates afterwards. Greenbook forecasts are available only with a five-year lag. Thus, our

current sample includes data up to 2008:IV. The data are provided by the Federal Reserve Bank

of Philadelphia, which matches the timing of the Greenbook forecasts with that of the SPF: the

dataset includes forecasts from four of the annual FOMC meetings whose date is the closest to the

middle of the quarter.19 In order to make the two datasets comparable, we omit the first 3 years

of observations and start the series in 1968:IV.

The Survey of Professional Forecasters (SPF) provides forecasts of inflation as well as a variety

of economic fundamentals at the quarterly frequency. These include nowcasts (forecasts of the

current quarter) as well as forecasts up to four quarters ahead. We use the forecasts of (annualized)

quarterly GNP/GDP deflator growth rates. The survey is conducted roughly at the end of every

second month in the quarter and includes 34 professional forecasts. The series start in 1968:IV. We

use the median forecast and end our series in 2008:IV to obtain a dataset spanning the same time

period as the Greenbook.

The Blue Chip Economic Indicators (BCEI) provides monthly forecasts of quarterly economic se-

19Greenbook forecasts can be obtained from the Philadelphia Fed web-site at

http://www.philadelphiafed.org/research-and-data/real-time-center/greenbook-data/, while the SPF forecasts

are at http://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-forecasters/.
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ries starting from 1980. It is a survey-based forecast dataset where about 50 US business economists

participate each month. Though this is a monthly series, in order to match the Greenbook and

SPF forecasts we take only four forecasts per year corresponding to the mid-quarter, i.e. February,

May, August, and November, from 1980 to 2008.20

To evaluate the Greenbook, SPF and Blue Chip forecasts, we use realized values of (annual-

ized) quarter-over-quarter growth rates of the GNP/GDP deflator constructed from the quarterly

vintages in the real-time dataset discussed by Croushore and Stark (2001). Our forecast evalua-

tion approach is consistent with that in Romer and Romer (2000), who use the second revision as

the benchmark for forecast evaluation, i.e. the specific quarter data available at the last month

of the consecutive quarter. Given the real-time nature of the dataset, the way we construct the

(annualized) quarter-over-quarter GNP/GDP deflator based inflation rate is as follows. For ex-

ample, the deflator for 1968:IV uses the 1969:I vintage and applies the following transformation:

100((PGDP68 : IV/PGDP68 : III)ˆ4 − 1). We do so for all the vintages up to 2010:II, then

take the diagonal elements of the resulting matrix. This way we obtain a real-time, annualized

measure of the quarter-over-quarter inflation rate of the previous quarter, which we use to evaluate

the nowcast or the corresponding h-quarter-ahead forecast over time.21

Figure 1 compares the Greenbook forecasts with those of the SPF and BCEI at the two-quarter-

ahead forecast horizon. The figure also plots the realized values for inflation at each horizons

(reported by the solid line, labeled “actual”). In the figure, not all forecasts have the same starting

point. In addition, there are several missing values, depending on when the forecast has been

made. Overall, the forecasts appear to be correlated with each other. Panel A in Table 4 reports

the mean squared forecast errors (MSFE) for the forecast at various horizons. It appears that the

SPF forecasts are inferior to those of the Greenbook at all horizons whereas the BCEI forecasts

appear to be superior. However, as we show further, there is substantial evidence of instabilities,

and the difference is most likely explained by the different sample period that BCEI covers.

To evaluate the forecast performance, we consider the following regression:

πt+h − πt+h|t = α+ βπt+h|t + ϵt+h, (32)

where πt+h is the realized inflation rate, πt+h|t is the inflation expectation for t + h based on the

information available at the time t, h is the forecast horizon and ϵt+h is a forecast error. We

consider h = 0, 1, ..., 5 for the Greenbook forecast, h = 0, 1, ..., 5 for the BCEI and h = 0, 1, ..., 4

for the SPF. For the Greenbook, the choice of h is constrained by the need to have a sample size

large enough for inference. The choice of h for the BCEI and SPF is dictated by data availability.

20Although the BCEI forecasts are available from August 1976, the forecasts for the initial four years are for annual

changes in key economic variables as opposed to quarterly, thus we omit the earlier period.
21In the real-time dataset provided by the Philadelphia Fed, the observation for 1995:IV is missing in the vintage

of 1996:I. We use the value available in the vintage of 1996:II as a substitute value.
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Table 4, Panel B, presents results for both traditional forecast rationality tests as well as the

“Fluctuation Rationality” test that we propose. The former relies on the maintained assumption

that the parameters of the regression are time invariant and it is implemented using a simple Wald-

type test in equation (32), where the parameters are estimated by OLS; we use a HAC variance

estimate (Newey and West, 1987) with a bandwidth equal to P 1/4. Our proposed test instead

assesses whether the parameters equal the values implied by forecast rationality at any given point

in time, and it is robust in the presence of instabilities. The test is implemented as in equation (4),

where θ̂j are the OLS estimates of α and β from equation (32) in rolling regressions with a window

of size m = 60.

The choice of m may affect the empirical results. In fact, m operates as a smoothing parameter

and its choice balances a usual trade-off between bias and efficiency: in the absence of instabilities,

a larger m would guarantee the most efficient estimate, but in the presence of instabilities a smaller

m would reduce the bias. An optimal choice of m would require assumptions on the nature of the

instabilities in the unknown data generating process. To avoid that, we recommend researchers to

check the sensitivity of their results to the choice of m, while making sure that the values of m are

large enough to ensure that Assumption 3 holds. In fact, following this recommendation, we also

examine the robustness of our results to m = 25 further below.

The column labeled “Traditional” in Panel B of Table 4 reports the test statistic WP in equation

(3) and the column labeled “Fluctuation” reports max
j̃∈{m,...,P}

Wj̃,m in Proposition 9; both are

reported for several horizons h, listed in the first column. Asterisks denote significance at the

5% significance level. The panel suggests that traditional forecast rationality tests fail to reject

the null hypothesis of forecast rationality at the 5% significance level for the Greenbook and SPF

forecasts, whereas they reject forecast rationality for the BCEI forecasts. However, as we show

later, this difference in the results highly depends on the evaluation period, as the sample for the

BCEI forecasts starts much later. It is, in fact, during a period of time when the Greenbook and

SPF forecasts fail the rationality test as well. In contrast, the “Fluctuation Rationality” test rejects

the null hypothesis of rationality for all forecasts.

Figure 2 plotsWj̃,m for several horizons together with the critical values for themax
j̃∈{m,...,P}

Wj̃,m

test statistic at the 5% significance level.22 The dates on the horizontal axis provide useful infor-

mation about the timings of the forecast rationality breakdowns. The dashed line plots the test

for the Greenbook forecasts. The figure shows three substantial breakdowns: the first two are

associated with the beginning and the end of 1990s. It appears that the forecasts deteriorate over

the 1990s and rationality tends to recover by the 2000s. However, for almost all forecast horizons,

forecast rationality breaks down again around 2005. Overall, it appears that the empirical evidence

22Given that the sample size for various forcasts at different horizons is not the same, the critical values for 5%

significance level could be different. We plot the maximum of these critical values.
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in favor of forecast rationality supported by the traditional forecast rationality tests, reported in

Table 4, is driven mainly by the good performance of the Greenbook forecasts at the beginning of

our sample. The dotted line plots the “Fluctuation Rationality” test for the BCEI forecasts while

the dashed and dotted line reports the same test for the SPF forecasts. The test suggests that

the empirical evidence on forecast rationality for SPF forecasts is qualitatively similar to that of

the Greenbook. However, the recovery of forecast rationality during the first half of 2000s is less

pronounced for SPF than for the Greenbook. By comparing the BCEI and the SPF, we note that

they behave similarly in the overlapping part of the evaluation period with some differences in the

timing of the rationality breakdown that occurs in the second half of 2000s. This suggests that

the traditional forecast rationality test results for the BCEI reported in Table 4 are different from

the other forecasts solely due to the different sample period. In general, the empirical evidence in

Figure 2 does not support forecast rationality for any of the forecasts at any horizons.

An important question is why professional forecasters and the Federal Reserve both made

systematic forecast errors for so long. It could be that they were focused on forecasting a different

inflation definition (such as core inflation), or that it was difficult to distinguish between permanent

and transitory effects of the shocks, or it could be that their forecasts are targeted at a different

horizon. Without knowing the actual forecasting model that they used, it is difficult to answer

this question. It is important to note that violations of forecast efficiency are not necessarily

evidence that forecasters’ performance is sub-optimal if there are occasional structural breaks that

forecasters learn about slowly. For example, if the process for inflation switches between different

regimes, forecasters’ models may adjust only slowly to the switch, as it would be hard to distinguish

between an outlier and a regime change; during the learning process, forecasts may look irrational.

Figure 3 reports robustness results to the choice ofm. When we choose a smaller value (m = 25),

the test has higher power to reject rationality in the Federal Reserve’s forecasts even earlier in the

sample, emphasizing the systematic downward forecast errors in the 1970s.

Our second objective is to assess whether the Federal Reserve has an information advantage

over private sector’s forecasts. To do so, we consider the following regression:

πt+h − πi
t+h|t = δ + βgπ

g
t+h|t + βiπ

i
t+h|t + ηt+h, (33)

where πg
t+h|t is the Greenbook forecast and πi

t+h|t, i = SPF,BCEI denote the SPF and BCEI

forecasts, respectively. The Federal Reserve forecasts are useful beyond that of the private sector

in predicting inflation if and only if βg ̸= 0. We test this hypothesis both with the traditional tests

as well as with our Fluctuation-type test. The latter test is implemented as in equation (4), where

θ̂j are the OLS estimates of δ and βg from equation (33) in rolling regressions with a window of

size m = 60.

The results are reported in Table 4, Panel C. The table reports the traditional test statistics
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(column labeled “Traditional”) and the Fluctuation-type test statistic (column labeled “Fluctua-

tion”); asterisks denote significance at the 5% level. According to the table, both the traditional

tests and the Fluctuation-type test suggest statistically significant evidence that the Federal Re-

serve has additional information relative to the private sector’s forecasts. Figure 4 sheds additional

light on this conclusion. The figure plots the Fluctuation-type test statistics over time and shows

that the information advantage of the Federal Reserve has deteriorated after 2003. In fact, the

rejections of the hypothesis of no information advantage of the Federal Reserve based on the Fluc-

tuation test appear mostly at the beginning of the sample. The result holds for both commercial

forecasts, that is the BCEI and the SPF.

Finally, Figure 5 plots the coefficients on Federal Reserve’s Greenbook forecasts, βg, in equation

(33) implemented with either the BCEI (dotted line) or the SPF (dashed-dotted line) forecasts as

additional explanatory variables in the rolling regressions. The figure suggests that the coefficient

for most horizons averages around unity. However, the coefficient seems to have been decreasing

over time across all horizons. The picture also shows a mild revival of the information advantage

between 1995-2001: it appears there is evidence in favor of the presence of additional explanatory

power of the Greenbook forecasts around 1995, which starts diminishing around 2001.

8 Conclusion

This paper proposes new forecast rationality tests that can be used in unstable environments.

The tests we propose can be applied to test forecast unbiasedness, efficiency, encompassing, serial

uncorrelation and, in general, regression-based tests of forecasting ability. Our test statistics have

non-standard limiting distributions and depend on nuisance parameters; in special cases that are

relevant in practice, the critical values can be tabulated, thus making the test easily implementable.

Our paper also analyzes the size properties of the test that we propose in small samples, as well

as the power of our tests relative to traditional tests in the presence of instabilities. We show that

traditional tests may fail to reject forecast optimality in the presence of instabilities whereas our

test performs well in that regard.

The methods we propose are robust to data mining because the critical values are based on the

supremum of the statistics across all samples. The test is not robust to data mining due to the

choice of the out-of-sample window size; to resolve the latter issue, the reader is referred to Inoue

and Rossi (2012) and references therein. Furthermore, we should note that our test is designed to

signal lack of rationality in sub-samples of the data: it might still be that our test signals lack of

rationality in sub-samples but forecasts are, on average, rational, as in the empirical analysis. It

also possible that a researcher may want to allow for a learning period or for some violations of

optimality at specific points in time; the test can be adapted to these situations by examining a
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plot of the test statistic Wj,m over time.

The empirical analysis compares various private sector forecasts to those of the Federal Reserve

Greenbook. We reject the forecast rationality of all these forecasts at some point in time. However,

even after allowing for time-variation, we find significant evidence in favor of the Fed’s additional

information advantage over the private sector when predicting future inflation.
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Tables
Table 1. Critical Values for the Fluctuation Rationality Test

Panel A. Recursive Case

ℓ ρ = 0.5;µ = 0.25 ρ = 0.5;µ = 0.3 ρ = 0.3;µ = 0.25 ρ = 0.3;µ = 0.3

1 7.6103 6.8123 8.1529 8.0414

2 10.7828 10.3909 12.1409 11.1946

3 12.6497 11.8263 14.2097 13.1495

4 14.8763 14.2381 15.8727 15.4504

5 16.4838 16.1415 17.9421 17.4355

Panel B. Rolling Case

ℓ ρ = 0.5;µ = 0.25 ρ = 0.5;µ = 0.3 ρ = 0.3;µ = 0.25 ρ = 0.3;µ = 0.3

1 7.7122 6.9621 8.8102 8.5989

2 10.5702 10.0698 12.4778 12.1265

3 13.2956 12.3069 14.5513 13.9501

4 14.8771 14.2805 16.6307 15.6392

5 16.8451 16.6441 19.0969 18.6127

Panel C. Survey and Model-Free Forecasts

ℓ µ̃ = 0.1 µ̃ = 0.2 µ̃ = 0.3 µ̃ = 0.4 µ̃ = 0.5 µ̃ = 0.6 µ̃ = 0.7 µ̃ = 0.8 µ̃ = 0.9

1 11.8290 10.5637 8.9252 8.1468 8.1409 7.2803 6.4978 6.0837 5.4695

2 14.9966 13.0846 12.8141 10.9084 11.1314 9.9386 9.1724 9.0589 7.8305

3 17.6768 15.7548 15.0608 13.4383 13.2113 12.6018 10.9597 10.8426 9.4727

4 19.8434 17.6051 17.0158 16.3186 15.1404 14.7573 13.5928 13.1087 10.8243

5 21.7091 20.4659 18.7186 18.2152 17.1092 15.6317 15.4842 13.9418 13.6335

Note. The table reports the critical values, κα,ℓ, for several restrictions (ℓ) at α = 5% significance level for

max
j∈{R+m,...,T} Wj,m for the: (i) recursive scheme under condition (22) (Panel A); (ii) rolling scheme under

condition (22) (Panel B); (iii) case when parameter estimation error is irrelevant as in Corollary 9 (Panel C).

Critical values are based on 1000 Monte Carlo simulations. For Panels A and B, T = 1000, ρ = R/T and µ = m/T ,

while P = 1000 and µ̃ = m/P in Panel C.
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Table 2. Size

Recursive Case Rolling Case

Traditional Test Fluctuation Test Traditional Test Fluctuation Test

R/P 100 200 100 200 100 200 100 200

Panel A. Mean Prediction Error

25 0.068 0.050 0.054 0.064 0.113 0.155 0.112 0.179

50 0.052 0.041 0.070 0.075 0.069 0.078 0.077 0.103

100 0.038 0.036 0.064 0.074 0.067 0.062 0.078 0.095

200 0.056 0.054 0.070 0.056 0.063 0.055 0.071 0.097

300 0.046 0.054 0.065 0.084 0.054 0.053 0.091 0.085

400 0.043 0.056 0.073 0.075 0.051 0.045 0.056 0.076

Panel B. Efficiency Test

25 0.045 0.058 0.071 0.101 0.924 0.999 0.546 0.784

50 0.049 0.055 0.073 0.097 0.226 0.721 0.092 0.128

100 0.042 0.054 0.072 0.125 0.063 0.129 0.050 0.056

200 0.050 0.047 0.086 0.068 0.045 0.060 0.054 0.055

300 0.060 0.059 0.079 0.111 0.060 0.036 0.048 0.047

400 0.070 0.041 0.085 0.083 0.047 0.051 0.048 0.050

Note. Table 2 reports empirical rejection frequencies of the traditional test statistics (column labeled “Traditional

Test”) and the test statistics max
j∈{R+m,...,T} Wj,m (column labeled “Fluctuation Test”) under the recursive and

rolling estimation schemes (see DGP in Section 3). The first column provides the R values; the columns under the

header give the P values. Nominal size is 0.05 and m = 50.
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Table 3. Power Analysis

Panel A. Mean Prediction Error

A. Non-Stationary B. Non-Stationary C. Stationary

b I. Traditional II. Fluctuation I. Traditional II. Fluctuation I. Traditional II. Fluctuation

0 0.0500 0.0510 0.0500 0.0510 0.0500 0.0510

0.1 0.0500 0.0630 0.0970 0.1040 0.0880 0.0760

0.2 0.0560 0.0890 0.1920 0.2090 0.1570 0.1170

0.3 0.0420 0.0840 0.3960 0.4370 0.2820 0.2030

0.4 0.0320 0.1117 0.5430 0.6600 0.3900 0.2730

0.5 0.0280 0.1480 0.7720 0.8610 0.5540 0.3590

0.6 0.0210 0.1460 0.8820 0.9570 0.6770 0.4490

0.7 0.0160 0.1720 0.9560 0.9940 0.7830 0.5050

0.8 0.0120 0.2010 0.9810 0.9990 0.8290 0.5350

0.9 0.0080 0.1740 0.9980 1.0000 0.8700 0.5490

1.0 0.0030 0.1890 0.9980 1.0000 0.9020 0.5720

Panel B. Efficiency Test

A. Non-Stationary B. Non-Stationary C. Stationary

b I. Traditional II. Fluctuation I. Traditional II. Fluctuation I. Traditional II. Fluctuation

0 0.0610 0.0700 0.0610 0.0700 0.0610 0.0700

0.50 0.0710 0.0820 0.1000 0.0960 0.1900 0.1730

1.00 0.0370 0.2020 0.4420 0.3170 0.8030 0.6620

1.50 0.0080 0.3600 0.7580 0.7000 0.9960 0.9560

2.00 0.0020 0.4930 0.8550 0.9250 1.0000 0.9900

2.50 0 0.6380 0.8730 0.9840 1.0000 1.0000

3.00 0 0.7630 0.8180 0.9920 1.0000 1.0000

3.50 0 0.8450 0.7140 0.9960 1.0000 1.0000

4.00 0 0.9090 0.5680 0.9970 1.0000 1.0000

4.50 0 0.9560 0.3830 0.9930 1.0000 1.0000

5.00 0 0.9740 0.2230 0.9960 1.0000 1.0000

Note. The table reports empirical rejection frequencies of the traditional test statistics (column labeled

“Traditional”) and the test statistics maxj∈{R+m,...,T}Wj,m (column labeled “Fluctuation”) under the recursive

estimation scheme. Non-Stationary cases A and B refer to DGP A and DGP B, Stationary C refers to DGP C in

Section 6, respectively. Nominal size is 0.05; T = 400; R = 300; m = 60.
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Table 4. Empirical Results

h A. MSFE B. Inflation Forecast C. Fed’s Information Advantage

Rationality Tests Over Private Sector’s Forecasts

Traditional Fluctuation Traditional Fluctuation

Greenbook

0 1.15 1.02 40.17* - - - -

1 1.70 0.16 77.36* - - - -

2 2.28 0.42 46.89* - - - -

3 2.42 0.15 49.41* - - - -

4 2.64 0.04 41.59* - - - -

5 2.60 0.22 37.88* - - - -

BCEI

0 0.98 8.59* 25.79* 6.20* 95.46*

1 1.32 11.31* 43.75* 17.99* 49.81*

2 1.55 16.10* 51.98* 32.29* 93.01*

3 1.89 22.85* 74.23* 19.64* 52.00*

4 2.25 45.19* 135.80* 11.58* 28.10*

5 2.56 67.95* 167.51* 5.25* 2.37

SPF

0 1.34 1.82 27.29* 29.08* 51.04*

1 2.23 0.12 45.12* 39.77* 39.71*

2 2.91 0.30 66.35* 16.99* 47.67*

3 3.52 0.14 77.79* 18.39* 38.46*

4 4.13 0.24 158.49* 36.90* 55.40*

Note. Panel A reports the MSFE, calculated as 1
P

∑P
t=1(πt+h − πt+h,t)

2, for various forecast horizons, h. Panels B

and C report the traditional test statistics, WP , (column labeled “Traditional”) and the test statistics

max
j∈{m,...,P} Wj̃,m (column labeled “Fluctuation”) for the null hypotheses of inflation forecast rationality and the

Fed having no informational advantage over the private sector, respectively. The Fluctuation test results are based

on m = 60 and the significance of the test statistics at the 5% significance level is indicated by asterisks.
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Figures
Figure 1: Inflation Forecasts
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Note. The figure plots Greenbook, BCEI and SPF forecasts of inflation for two-quarter-ahead as well as the realized

values of inflation, labeled as “actual,” for the same horizon. If a forecast at a particular time is not available, it is

depicted as a missing value.
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Figure 2: Fluctuation Rationality Test
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Note. The figure reports the time path of the test statistics Wj,m for the null hypothesis of forecast rationality for

Greenbook (dashed line), BCEI (dotted line) and SPF (dashed and dotted line), m = 60 and the solid line reports

the critical value of the Fluctuation Rationality test at the 5% significance level. If the test statistic is above the

solid line, we reject the null hypothesis of rationality at any point in time. The dates in the horizontal axis suggest

a particular break-date.
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Figure 3: Robustness to the Choice of m for Greenbook Forecasts
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Note. The figure reports the time path of the test statistics Wj,m for the null hypothesis of forecast rationality for

Greenbook (dashed line), BCEI (dotted line) and SPF (dashed and dotted line), m = 25 and the solid line reports

the critical value of the Fluctuation Rationality test at the 5% significance level. If the test statistic is above the

solid line, we reject the null hypothesis of rationality at any point in time. The dates in the horizontal axis suggest

a particular break-date.
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Figure 4: Fed’s Informational Advantage
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Note. The figure reports the test statistics Wj,m for the null hypothesis βg = 0 based on m = 60.

34



Figure 5: Fed’s Informational Coefficients
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Note. The figure shows the rolling estimate of βg based on m = 60.
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10 Appendix

10.1 Proofs

Proof of Equation (6). Note that

θ̂j =

m−1
j∑

t=j−m+1

ĝtĝ
′
t

−1m−1
j∑

t=j−m+1

ĝtvt+h (γ̂t,R)

 (34)

=

m−1
j∑

t=j−m+1

ĝtĝ
′
t

−1m−1
j∑

t=j−m+1

ft+h (γ̂t,R)

 .

From a mean value expansion of ft+h (γ̂t,R) around γ∗ we have:

ft+h (γ̂t,R) = ft+h + ft+h,γ (γ̂t,R − γ∗) + wt+h,

where wt+h is the remainder. Furthermore, by Assumption 1(i),

m−1/2
j∑

t=j−m+1

ft+h (γ̂t,R) = m−1/2
j∑

t=j−m+1

ft+h +m−1/2
j∑

t=j−m+1

ft+h,γBtHt (35)

+m−1/2
j∑

t=j−m+1

wt+h,

As in the proof of equation (4.1) in West (1996), note that

m−1/2
j∑

t=j−m+1

ft+h,γBtHt = m−1/2FB

j∑
t=j−m+1

Ht + Ãj , where (36)

Ãj ≡ m−1/2
j∑

t=j−m+1

(ft+h,γ − F )BHt +m−1/2F

j∑
t=j−m+1

(Bt −B)Ht

+m−1/2
j∑

t=j−m+1

(ft+h,γ − F ) (Bt −B)Ht.

Assumption 2 implies that the last three terms in Ãj are op (1).

Therefore, by equations (34), (35) and (36), we have:

m1/2θ̂j =

m−1
j∑

t=j−m+1

ĝtĝ
′
t

−1m−1/2
j∑

t=j−m+1

ft+h (γ̂t,R)


=

m−1
j∑

t=j−m+1

ĝtĝ
′
t

−1m−1/2
j∑

t=j−m+1

ft+h +m−1/2FB

j∑
t=j−m+1

Ht + Ãj +m−1/2
j∑

t=j−m+1

wt+h


=

m−1
j∑

t=j−m+1

ĝtĝ
′
t

−1

[Iℓ, FB]

m−1/2
j∑

t=j−m+1

(
ft+h

Ht

)+A†
j ,

36



where

A†
j ≡

m−1
j∑

t=j−m+1

ĝtĝ
′
t

−1 Ãj +m−1/2
j∑

t=j−m+1

wt+h

 .

Thus,

m1/2θ̂j =

m−1
j∑

t=j−m+1

ĝtĝ
′
t

−1

[Iℓ, FB]

(
T

m

)1/2
{

1

T 1/2

j∑
t=R

(
ft+h

Ht

)
− 1

T 1/2

j−m∑
t=R

(
ft+h

Ht

)}
+A†

j

= G−1 [Iℓ, FB]

(
T

m

)1/2 1

T 1/2

{
j∑

t=R

(
ft+h

Ht

)
−

j−m∑
t=R

(
ft+h

Ht

)}
+Aj , where

Aj = A†
j+


(
m−1

j∑
t=j−m+1

ĝtĝ
′
t

)−1

−G−1

 [Iℓ, FB]
(
T
m

)1/2{ 1
T 1/2

j∑
t=R

(
ft+h

Ht

)
− 1

T 1/2

j−m∑
t=R

(
ft+h

Ht

)}
.

By Assumption 2(v) and arguments similar to West (1996, proof of equation 4.1) and West and

McCracken (1998, Lemma 4.1), limT→∞supj

∣∣∣∣∣m−1/2
j∑

t=j−m+1
wt+h

∣∣∣∣∣ = op (1) . In addition, from

arguments similar to those in Lemma 4.3 in West and McCracken (1998), Assumption 2 and con-

sistency of γ̂t,R, limT→∞supj

(m−1
j∑

t=j−m+1
ĝtĝ

′
t

)−1

−G−1

 = 0. Therefore, Assumptions 1

and 2 ensure that limT→∞supj Aj = op (1).

Proof of Proposition 1. By Hansen (1992), under Assumptions 1-4 and T−1/2ξT → ξ in

DR(ℓ+q) [0, 1] then

1√
T

j∑
t=1

(
bR,t,j · Iℓ 0

0 aR,t,j · Iq

)(
ft+h

ht

)
− C∗

T (τ) ⇒
∫ τ

0

(
σf (s) · Iℓ 0

0 σh (s, τ) · Iq

)
dξ (s) ,

where ξ (s) = S1/2Bl+q (s), zt =
∑∞

k=1Et

([
ft+h+k ht+k

]′)
and

C∗
T (τ) =

T−1/2

[τT ]∑
t=1

[(
bR,t,j · Iℓ 0

0 aR,t,j · Iq

)
−

(
bR,t−1,j · Iℓ 0

0 aR,t−1,j · Iq

)]
zt

−T−1/2

(
bR,j,j · Iℓ 0

0 aR,j,j · Iq

)
zj+1

}
.

The proof follows from the fact that supτC
∗
T (τ) = op (1) , using the same reasoning as in

Cavaliere (2004, Proof of Theorem 4), and the fact that the variances σf (s) , σh (s, τ) are square

integrable and bounded.

Proof of Proposition 2. It follows directly from Proposition 1 and Assumption 2 that

T−1/2
j∑

t=R

(
ft+h

Ht

)
⇒
∫ τ

0
Ω(s, τ)1/2 S1/2dBl+q (s) .
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Thus,

m1/2 θ̂j = G−1

(
T

m

)1/2

[Iℓ, FB]

(
1√
T

j∑
t=R

(
ft+h

Ht

)
− 1√

T

j−m∑
t=R

(
ft+h

Ht

))
+Aj ⇒

µ−1/2G−1 [Iℓ, FB]

(∫ τ

0
Ω(s, τ)1/2 S1/2dBl+q (s)−

∫ τ−µ

0
Ω(s, τ − µ)1/2 S1/2dBl+q (s)

)
(37)

= µ−1/2G−1 [Iℓ, FB]

 ∫ τ−µ
0

[
Ω(s, τ)1/2 − Ω(s, τ − µ)1/2

]
S1/2dBl+q (s)

+
∫ τ
τ−µΩ(s, τ)1/2 S1/2dBl+q (s)


= µ−1/2G−1 [Iℓ, FB]

∫ τ

0

 [
Ω(s, τ)1/2 − Ω(s, τ − µ)1/2

]
· 1 (s ≤ τ − µ)

+Ω (s, τ)1/2 · 1 (τ − µ < s ≤ τ)

S1/2dBl+q (s)

=
∫ τ
0 ω (s, τ) dBl+q (s) = Bl

(∫ τ
0 ω (s, τ)ω (s, τ)′ ds

)
,

where ω (s, τ) , ω̃ (s, τ) are defined in Proposition 2. The second line follows from Assumptions 2

and 3 as well as Proposition 1; the last equality follows from Lemma 2 in Cavaliere (2004).

Proof of Proposition 3. Note that:

ω (s, τ) = µ− 1
2G−1 [Iℓ, FB]

 (Ω (s, τ)1/2 − Ω(s, τ − µ)
)
· 1 (s ≤ τ − µ)

+Ω (s, τ)1/2 · 1 (τ − µ < s ≤ τ)

S1/2

= µ− 1
2G−1 [Iℓ, FB]


σf (s) · 1 (τ − µ ≤ s < τ) · Iℓ 0

0
(σh (s, τ)− σh (s, τ − µ)) · 1 (s ≤ τ − µ)

+σh (s, τ) · 1 (τ − µ ≤ s ≤ τ) · Iq

S1/2

(i)
∫ τ
τ−µ σ

2
f (s) ds =

∫ τ
τ−µ (1 (s ≥ ρ))2 ds =

∫ τ
τ−µ ds = µ;

(ii) Recursive case:23 Let π̃ ≡ µ/ (τ − µ) .∫ τ

τ−µ
σf (s)σh (s, τ) ds =

∫ τ

τ−µ
1 (s ≥ ρ) · ([ln (τ)− ln (ρ)] · 1 (s ≤ ρ) + [ln (τ)− ln (s)] · 1 (s > ρ))ds

=

∫ τ

τ−µ
[ln (τ)− ln (s)] ds =

∫ τ

τ−µ
ln (τ) ds−

∫ τ

τ−µ
ln (s) ds

= ln (τ) (τ − τ + µ)− (ln(τ)τ − τ) + (ln(τ − µ)(τ − µ)− (τ − µ))

= − ln (τ) (τ − µ) + τ + ln(τ − µ)(τ − µ)− τ + µ

= µ− (τ − µ) ln

(
τ

τ − µ

)
= µ

[
1− π̃−1 ln (1 + π̃)

]
,

Furthermore,

23Note
∫
ln(x)dx = ln(x)x− x+ c;

∫
ln(x)2dx = xln(x)2 − 2xln(x) + 2x+ c
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∫ τ−µ

0
(σh (s, τ)− σh (s, τ − µ))2 ds =

∫ τ−µ

0
[ln (τ)− ln (τ − µ)]2 ds = (τ − µ)

[
ln

(
τ

τ − µ

)]2
.

∫ τ

τ−µ
σ2
h (s, τ) ds =

∫ τ

τ−µ
([ln (τ)− ln (ρ)] · 1 (s < ρ) + [ln (τ)− ln (s)] · 1 (s ≥ ρ))2ds

=

∫ τ

τ−µ
[ln (τ)− ln (s)]2 ds =

∫ τ

τ−µ

(
ln (τ)2 − 2 ln (τ) ln(s) + ln (s)2

)
ds

= ln (τ)2 µ− 2 ln (τ) [ln (τ) τ − τ − ln (τ − µ) (τ − µ) + τ − µ] +

+ ln (τ)2 τ − 2τ ln (τ) + 2τ − ln (τ − µ)2 (τ − µ) + 2 (τ − µ) ln (τ − µ)− 2 (τ − µ)

= ln (τ)2 µ− ln (τ)2 τ + 2 ln (τ) ln (τ − µ) (τ − µ)

+ 2 ln (τ)µ− 2τ ln (τ)− ln (τ − µ)2 (τ − µ) + 2 (τ − µ) ln (τ − µ) + 2µ

= 2µ+ ln (τ)2 (µ− τ)− ln (τ − µ)2 (τ − µ) + 2 ln (τ) ln (τ − µ) (τ − µ)

+ 2 (τ − µ) ln (τ − µ) + 2 ln (τ) (µ− τ)

= 2µ+ ln (τ)2 (µ− τ)− ln (τ − µ)2 (τ − µ)

+ 2 ln (τ) ln (τ − µ) (τ − µ) + 2 (τ − µ) ln

(
τ − µ

τ

)
= 2µ− 2 (τ − µ) ln

(
τ

τ − µ

)
− (τ − µ)

[
ln

(
τ

τ − µ

)]2

∫ τ

0

[
(σh (s, τ)− σh (s, τ − µ))2 · 1 (s ≤ τ − µ) + σ2

h (s, τ) · 1 (τ − µ < s < τ)
]
ds

=

∫ τ−µ

0
(σh (s, τ)− σh (s, τ − µ))2 ds+

∫ τ

τ−µ
σ2
h (s, τ) ds

= (τ − µ)

[
ln

(
τ

τ − µ

)]2
+ 2µ− 2 (τ − µ) ln

(
τ

τ − µ

)
− (τ − µ)

[
ln

(
τ

τ − µ

)]2
= 2µ− 2 (τ − µ) ln

(
τ

τ − µ

)
= 2µ

[
1− π̃−1 ln (1 + π̃)

]
(iii) Rolling case: Let π† ≡ µ

ρ .

In the rolling estimation scheme there are two possible cases. Case (a) occurs when τ − ρ ≥ ρ,

while (b) when τ −ρ < ρ. We consider the calculation of the respective integrals in these two cases.

We show that the covariance is the same in both cases, no matter whether µ ≥ ρ or µ < ρ.

Case (a): τ − ρ ≥ ρ.

This allows for two sub-cases: (i) µ ≥ ρ ⇔ τ −ρ ≥ τ −µ ≥ ρ and (ii) µ < ρ ⇔ τ −µ > τ −ρ ≥ ρ

(recall that τ ≥ ρ+ µ).
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In case (i),∫ τ

τ−µ
σh (s, τ)σf (s) ds =

∫ τ

τ−µ
1 (s ≥ ρ) · 1

ρ

[
s · 1(s ≤ ρ) + ρ · 1(ρ < s ≤ τ − ρ)

+(τ − s) · 1(s > τ − ρ)

]
ds =

=

∫ τ

τ−µ

1

ρ
[ρ · 1(ρ ≤ s ≤ τ − ρ) + (τ − s) · 1(s > τ − ρ)]ds =

= (µ− ρ) +
1

2
ρ = µ− 1

2
ρ = µ

(
1− 1

2

ρ

µ

)
= µ

(
1− 1

2π†

)
;

whereas in case (ii),

∫ τ

τ−µ
σh (s, τ)σf (s) ds =

∫ τ

τ−µ
1 (s ≥ ρ) · 1

ρ

[
s · 1(s ≤ ρ) + ρ · 1(ρ < s ≤ τ − ρ)

+(τ − s) · 1(s > τ − ρ)

]
ds =

=

∫ τ

τ−µ

1

ρ
[(τ − s) · 1(s > τ − ρ)]ds =

∫ τ

τ−µ

1

ρ
(τ − s)ds =

1

2

µ2

ρ
=

1

2
µπ†.

Furthermore,∫ τ−µ

0
(σh (s, τ)− σh (s, τ − µ))2 ds =

(
1

ρ

)2 ∫ τ−µ

0


[s · 1(s ≤ ρ) + ρ · 1(ρ < s ≤ τ − ρ) + (τ − s) · 1(τ − ρ < s ≤ τ)]−

[s · 1(s ≤ ρ) + ρ · 1(ρ < s ≤ τ − µ− ρ)+

(τ − µ− s) · 1(τ − µ− ρ < s ≤ τ − µ)]


2

ds =

(
1

ρ

)2 ∫ τ−µ

0

(
ρ · 1(τ − µ− ρ ≤ s ≤ τ − ρ) + (τ − s) · 1(τ − ρ < s ≤ τ)

−(τ − µ− s) · 1(τ − µ− ρ < s ≤ τ − µ)

)2

ds

The expression above simplifies:

(i) µ ≥ ρ ⇔ τ − ρ > τ − µ ≥ ρ

∫ τ−µ

0
(σh (s, τ)− σh (s, τ − µ))2 ds =

(
1

ρ

)2 ∫ τ−µ

τ−µ−ρ
(ρ− (τ − µ− s))2 ds =

1

3
ρ.

In addition,∫ τ

τ−µ
σ2
h (s, τ) ds =

(
1

ρ

)2 ∫ τ

τ−µ
[s · 1(s ≤ ρ) + ρ · 1(ρ < s ≤ τ − ρ) + (τ − s) · 1(s > τ − ρ)]2ds =

=

(
1

ρ

)2(∫ τ−ρ

τ−µ
ρ2ds+

∫ τ

τ−ρ
(τ − s)2ds

)
= (µ− ρ) +

1

3
ρ = µ− 2

3
ρ.

Thus, ∫ τ−µ

0
(σh (s, τ)− σh (s, τ − µ))2 ds+

∫ τ

τ−µ
σ2
h (s) ds = µ− 1

3
ρ = µ

(
1− 1

3π†

)
.
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(ii) µ < ρ ⇔ τ − µ > τ − ρ ≥ ρ∫ τ−µ

0
(σh (s, τ)− σh (s, τ − µ))2 ds =

(
1

ρ

)2 ∫ τ−µ

0

(
(ρ− (τ − µ− s)) · 1(τ − µ− ρ ≤ s ≤ τ − ρ) + (τ − s) · 1(τ − ρ < s < τ)

−(τ − µ− s) · 1(τ − µ > s > τ − ρ)

)2

ds

(
1

ρ

)2 ∫ τ−µ

0
[(ρ− (τ − µ− s)) · 1(τ − µ− ρ ≤ s ≤ τ − ρ) + µ · 1(τ − µ > s > τ − ρ)]2 ds(

1

ρ

)2 ∫ τ−ρ

τ−µ−ρ
[ρ− (τ − µ− s)]2 ds+

(
µ

ρ

)2 ∫ τ−µ

τ−ρ
ds = −1

3

µ2

ρ2
(2µ− 3ρ) =

µ2

ρ
− 2

3

µ3

ρ2

In addition,∫ τ

τ−µ
σ2
h (s, τ) ds =

(
1

ρ

)2 ∫ τ

τ−µ
[s · 1(s ≤ ρ) + ρ · 1(ρ < s ≤ τ − ρ) + (τ − s) · 1(s > τ − ρ)]2ds =

=

(
1

ρ

)2 ∫ τ

τ−µ
(τ − s)2ds =

1

3

µ3

ρ2

Thus,∫ τ−µ

0
(σh (s, τ)− σh (s, τ − µ))2 ds+

∫ τ

τ−µ
σ2
h (s) ds =

µ2

ρ
− 2

3

µ3

ρ2
+

1

3

µ3

ρ2
= µπ†

(
1− 1

3π†

)
.

Case (b): τ − ρ < ρ.

Note that, since τ ≥ ρ+ µ, in this case the only possible subcase is µ < ρ. Thus,∫ τ

τ−µ
σf (s)σh (s, τ) ds =

1

ρ

∫ τ

τ−µ
1 (s ≥ ρ) ·

[
s · 1(s < τ − ρ) + (τ − ρ) · 1(τ − ρ ≤ s ≤ ρ)

+(τ − s) · 1(s > ρ)

]
ds =

=
1

ρ

∫ τ

τ−µ
(τ − s) · 1(s > ρ)ds =

1

ρ

∫ τ

τ−µ
(τ − s)ds =

1

2

µ2

ρ
=

1

2
µπ†

Furthermore,∫ τ−µ

0
(σh (s, τ)− σh (s, τ − µ))2 ds

=

(
1

ρ

)2 ∫ τ−µ

0


s · 1(s < τ − ρ) + (τ − ρ) · 1(τ − ρ ≤ s ≤ ρ) + (τ − s) · 1(s > ρ)−(

s · 1(s < τ − µ− ρ) + (τ − µ− ρ) · 1(τ − µ− ρ ≤ s ≤ ρ)

+(τ − µ− s) · 1(s > ρ)

) 
2

ds

=

(
1

ρ

)2 ∫ τ−µ

0

(
(s− (τ − µ− ρ)) · 1(τ − µ− ρ < s < τ − ρ)+

((τ − ρ)− (τ − µ− ρ)) · 1(τ − ρ ≤ s ≤ ρ) + (τ − s− (τ − µ− s)) · 1(s > ρ)

)2

ds

=

(
1

ρ

)2(∫ τ−ρ

τ−µ−ρ
(s− (τ − µ− ρ))2 ds+

∫ ρ

τ−ρ
µ2ds+

∫ τ−µ

ρ
µ2ds

)
=− 1

ρ2

(
µ2 (µ− τ + ρ)− 1

3
µ3 + µ2 (τ − 2ρ)

)
=

(
µ

ρ

)2(1

3
µ− (µ− ρ)

)
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In addition,
∫ τ
τ−µ σ

2
h (s, τ) ds =

1
ρ2

∫ τ
τ−µ(τ − s)2ds = 1

3
µ3

ρ2
. Furthermore,

∫ τ−µ

0
(σh (s, τ)− σh (s, τ − µ))2 ds+

∫ τ

τ−µ
σ2
h (s) ds =

(
1

ρ

)2(1

3
µ3 − µ2(µ− ρ)

)
+
1

3

µ3

ρ2
= µπ†

(
1− 1

3π†

)
.

Proof of Proposition 4. From Proposition 2 (in particular, equation 37),

m1/2θ̂j ⇒ µ− 1
2G−1 [Iℓ, FB]

(∫ τ

0
Ω(s, τ)1/2 S1/2dBl+q (s)−

∫ τ−µ

0
Ω(s, τ − µ)1/2 S1/2dBl+q (s)

)
.

By arguments similar to those in Proposition 2

m1/2θ̂j ⇒ B
(∫ τ

0
ω̃ (s, τ) ω̃ (s, τ)′ ds

)
− B

(∫ τ−µ

0
ω̃ (s, τ) ω̃ (s, τ)′ ds

)
where ω̃ (s, τ) = µ− 1

2G−1 [Iℓ, FB] Ω (s, τ)1/2 S1/2.

Furthermore,

∫ τ

0
ω̃ (s, τ) ω̃ (s, τ)′ ds = µ−1G−1 [Iℓ, FB]

∫ τ

0
Ω(s, τ)1/2 SΩ′ (s, τ)1/2 ds [Iℓ, FB]′G−1 =

µ−1G−1 [Iℓ, FB]

[ ∫ τ
0 σ2

f (s) dsSff

∫ τ
0 σf (s)σh (s, τ) dsSfh∫ τ

0 σf (s)σh (s, τ) dsS
′
fh

∫ τ
0 σ2

h (s, τ) dsShh

][
Iℓ

B′F ′

]
G−1.

(i)
∫ τ
0 σ2

f (s) ds = (τ − ρ);

(ii) Recursive case:

∫ τ

0
σf (s)σh (s, τ) ds =

∫ τ

0
1 (s ≥ ρ) · ([ln (τ)− ln (ρ)] · 1 (s ≤ ρ) + [ln (τ)− ln (s)] · 1 (s > ρ))ds

=

∫ τ

ρ
[ln (τ)− ln (s)] ds =

∫ τ

ρ
ln (τ) ds−

∫ τ

ρ
ln (s) ds =

= ln (τ) (τ − ρ)− (ln(τ)τ − τ) + (ln(ρ)ρ− ρ) =

= (τ − ρ)− ρ ln

(
τ

ρ

)
= (τ − ρ)

(
1− ρ

τ − ρ
ln

(
τ

ρ

))
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∫ τ

0
σ2
h (s, τ) ds =

∫ τ

0
([ln (τ)− ln (ρ)] · 1 (s < ρ) + [ln (τ)− ln (s)] · 1 (s ≥ ρ))2ds

=

∫ ρ

0
[ln (τ)− ln (ρ)]2 ds+

∫ τ

ρ
[ln (τ)− ln (s)]2 ds

= ρ
(
ln2 (τ)− 2 ln (τ) ln (ρ) + ln2 (ρ)

)
+ (τ − ρ) ln2 (τ)

− 2 ln τ

∫ τ

ρ
ln (s) ds+

∫ τ

ρ
ln2 (s) ds

= ρ
(
ln2 (τ)− 2 ln (τ) ln (ρ) + ln2 (ρ)

)
+ (τ − ρ) ln2 (τ)−

− 2 ln (τ) (τ ln (τ)− τ − ρ ln (ρ) + ρ)+

+ (τ ln2 (τ)− 2τ ln (τ) + 2τ)− (ρ ln2 (ρ)− 2ρ ln (ρ) + 2ρ)

= ρ ln2 (τ)− 2ρ ln (τ) ln (ρ) + ρ ln2 (ρ) + (τ − ρ) ln2 (τ)−

− 2τ ln2 (τ) + 2τ ln (τ) + 2ρ ln (τ) ln (ρ)− 2ρ ln (τ)+

+ τ ln2 (τ)− 2τ ln (τ) + 2τ − ρ ln2 (ρ) + 2ρ ln (ρ)− 2ρ

= 2τ − 2ρ− 2ρ ln (τ) + 2ρ ln (ρ) = 2(τ − ρ)

(
1− ρ

τ − ρ
ln

(
τ

ρ

))
Thus,

∫ τ

0
Ω(s, τ)1/2 SΩ′ (s, τ)1/2 ds =

[ ∫ τ
0 σ2

f (s) dsSff

∫ τ
0 σf (s)σh (s, τ) dsSfh∫ τ

0 σf (s)σh (s, τ) dsS
′
fh

∫ τ
0 σ2

h (s, τ) dsShh

]

= (τ − ρ)

 Sff

(
1− ρ

τ−ρ ln
(
τ
ρ

))
Sfh(

1− ρ
τ−ρ ln

(
τ
ρ

))
S′
fh 2

(
1− ρ

τ−ρ ln
(
τ
ρ

))
Shh


and∫ τ

0
ω̃ (s, τ) ω̃ (s, τ)′ ds

= µ−1G−1 [Iℓ, FB]

[ ∫ τ
0 σ2

f (s) dsSff

∫ τ
0 σf (s)σh (s, τ) dsSfh∫ τ

0 σf (s)σh (s, τ) dsS
′
fh

∫ τ
0 σ2

h (s, τ) dsShh

][
Iℓ

B′F ′

]
G−1

= G−1 (τ − ρ)

µ
[Iℓ, FB]

 Sff

(
1− ρ

τ−ρ ln
(
τ
ρ

))
Sfh(

1− ρ
τ−ρ ln

(
τ
ρ

))
S′
fh 2

(
1− ρ

τ−ρ ln
(
τ
ρ

))
Shh

[ Iℓ

B′F ′

]
G−1

(τ − ρ)

µ
G−1

Sff +

1− ρ
ln
(
τ
ρ

)
τ − ρ

(SfhB
′F ′ + FBS′

fh

)
+ 2FBShhB

′F ′

1− ρ
ln
(
τ
ρ

)
τ − ρ

G−1;

(iii) Rolling Case:
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Case (a): τ − ρ ≥ ρ∫ τ

0
σh (s, τ)σf (s) ds

=

∫ τ

0
1 (s ≥ ρ)

(
1

ρ
[s · 1 (s ≤ ρ) + ρ · 1 (ρ < s ≤ τ − ρ) + (τ − s) · 1 (s > τ − ρ)]

)
ds

=

∫ τ

ρ

1

ρ
[ρ · 1 (ρ ≤ s < τ − ρ) + (τ − s) · 1 (s > τ − ρ)] ds

=
1

ρ

(∫ τ−ρ

ρ
ρds+

∫ τ

τ−ρ
(τ − s) ds

)
=

1

ρ

(
ρ(τ − 2ρ) + τρ− 1

2
τ2 +

1

2
(τ − ρ)2

)
= τ − 3

2
ρ

∫ τ

0
σ2
h (s, τ) ds

=

∫ τ

0

(
1

ρ
{s · 1 (s ≤ ρ) + ρ · 1 (ρ < s ≤ τ − ρ) + (τ − s) · 1 (s > τ − ρ)

)2

ds

=

(
1

ρ

)2(∫ τ

0
s2 · 1 (s ≤ ρ) ds+

∫ τ

0
ρ2 · 1 (ρ < s ≤ τ − ρ) ds+

∫ τ

0
(τ − s)2 · 1 (s > τ − ρ) ds

)
=

(
1

ρ

)2
(∫ ρ

0
s2ds+ ρ2

∫ τ−ρ

ρ
ds+

(
1

ρ

)2 ∫ τ

τ−ρ
(τ − s)2 ds

)

=

(
1

ρ

)2 1

3
ρ3 + (τ − 2ρ) +

(
1

ρ

)2
(
τ2ρ+

τ3 − (τ − ρ)3

3
− 2τ

τ2 − (τ − ρ)2

2

)
= τ − 4

3
ρ

Thus, ∫ τ

0
Ω (s, τ)1/2 SΩ′ (s, τ)1/2 ds =

[
(τ − ρ)Sff

(
τ − 3

2ρ
)
Sfh(

τ − 3
2ρ
)
S′
fh

(
τ − 4

3ρ
)
Shh

]
,

and ∫ τ

0
ω̃ (s, τ) ω̃ (s, τ)′ ds = µ−1G−1 [Iℓ, FB]

[
(τ − ρ)Sff

(
τ − 3

2ρ
)
Sfh(

τ − 3
2ρ
)
S′
fh

(
τ − 4

3ρ
)
Shh

][
Iℓ

B′F ′

]
G−1 =

µ−1G−1

(
Sff (τ − ρ) +

(
τ − 3

2
ρ

)(
FBS′

fh + SfhB
′F ′)+ (τ − 4

3
ρ

)
FBShhB

′F ′
)
G−1;
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Case (b): τ − ρ < ρ∫ τ

0
σf (s)σh (s, τ) ds

=

∫ τ

0
{1 (s ≥ ρ)}

{
s

ρ
· 1 (s ≤ τ − ρ) +

(τ − ρ)

ρ
· 1 (τ − ρ < s ≤ ρ) +

(τ − s)

ρ
· 1 (s > ρ)

}
ds =

=

∫ τ

0

1

ρ
(τ − s) · 1 (s > ρ) ds =

1

ρ

∫ τ

ρ
(τ − s) ds =

1

2ρ
(τ − ρ)2

∫ τ

0
σ2
h (s) ds =

∫ τ

0

(
1

ρ
{s · 1 (s ≤ τ − ρ) + (τ − ρ) · 1 (τ − ρ < s ≤ ρ) + (τ − s) · 1 (s > ρ)}

)2

ds

=

(
1

ρ

)2(∫ τ−ρ

0
s2ds+

∫ ρ

τ−ρ
(τ − ρ)2 ds+

∫ τ

ρ
(τ − s)2 ds

)
=

(
1

ρ

)2(1

3
(τ − ρ)3 + (τ − ρ)2 (2ρ− τ) + τ2 (τ − ρ) +

τ3 − ρ3

3
− τ3 + τρ2

)
=

1

3ρ2
(τ − ρ)2 (4ρ− τ)

Thus,

∫ τ

0
Ω(s, τ)1/2 SΩ′ (s, τ)1/2 ds =

[
(τ − ρ)Sff

1
2ρ (τ − ρ)2 Sfh

1
2ρ (τ − ρ)2 S′

fh
1

3ρ2
(τ − ρ)2 (4ρ− τ)Shh

]
,

and ∫ τ

0
ω̃ (s, τ) ω̃ (s, τ)′ ds

= µ−1G−1 [Iℓ, FB]

[
(τ − ρ)Sff

1
2ρ (τ − ρ)2 Sfh

1
2ρ (τ − ρ)2 S′

fh
(τ−ρ)2

3ρ2
(4ρ− τ)Shh

][
Iℓ

B′F ′

]
G−1

=
(τ − ρ)

µ
G−1

{
Sff +

(τ − ρ)

2ρ

(
FBS′

fh + SfhB
′F ′)+ (τ − ρ) (4ρ− τ)

3ρ2
FBShhF

′B′
}
G−1.

Proof of Theorem 5. The proof follows directly from Propositions 2 and 3.

Proof of Proposition 6. The result follows directly from Propositions 3 and 4 by imposing

F = 0.

Proof of Proposition 7. From Proposition 2 note that:∫ τ

0
ω̃ (s, τ) ω̃ (s, τ)′ ds = µ−1G−1

∫ τ

0
[Iℓ, FB] Ω (s, τ)1/2 SΩ(s, τ)1/2 [Iℓ, FB]′ dsG−1 (38)

= µ−1G−1

∫ τ

0
[σ2

f (s)Sff + σf (s)σh (s, τ)
(
FBShf + SfhB

′F ′)+ σ2
h (s, τ)FBShhB

′F ′]dsG−1

(i) Recursive case:
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By imposing −1
2(FBShf + SfhB

′F ′) = FBShhB
′F ′ from condition (22) on equation (38), we

can have:∫ τ

0
ω̃ (s, τ) ω̃ (s, τ)′ ds = µ−1G−1

∫ τ

0

[
σ2
f (s)Sff + σf (s)σh (s, τ) (FBShf + SfhB

′F ′)

+σ2
h (s, τ)FBShhB

′F ′

]
dsG−1

= µ−1G−1

∫ τ

0

[
σ2
f (s)Sff − 2σf (s)σh (s, τ)FBShhB

′F ′

+σ2
h (s, τ)FBShhB

′F ′

]
dsG−1.

From Proposition 4 note that
∫ τ
0 σ2

h (s, τ) ds = 2
∫ τ
0 σh (s, τ)σf (s) ds. This further simplifies

the expression:∫ τ

0
ω̃ (s, τ) ω̃ (s, τ)′ ds = µ−1G−1

∫ τ

0

[
σ2
f (s)Sff − 2σf (s)σh (s, τ)FBShhB

′F ′

+σ2
h (s, τ)FBShhB

′F ′

]
dsG−1

= µ−1G−1

(∫ τ

0
σ2
f (s)Sffds

)
G−1 =

(τ − ρ)

µ
G−1SffG

−1

(ii) Rolling case:

By imposing condition (22) on equation (38), we can further simplify:∫ τ

0
ω̃ (s, τ) ω̃ (s, τ)′ ds = µ−1G−1SffG

−1

∫ τ

0
[σf (s)

2 − 2σf (s)σh (s, τ) + σ2
h (s, τ)]ds. (39)

Case (a): τ − ρ > ρ.

By Proposition 4, equation (39) simplifies to:∫ τ

0
ω̃ (s, τ) ω̃ (s, τ)′ ds = µ−1

∫ τ

0
[σf (s)

2 − 2σf (s)σh (s, τ) + σ2
h (s, τ)

2]dsG−1SffG
−1 (40)

=
2

3

ρ

µ
G−1SffG

−1,

and is independent of τ .

Case (b): τ − ρ < ρ.

By Proposition 4, equation (39) simplifies to:∫ τ

0
ω̃ (s) ω̃ (s)′ ds =

1

µ

∫ τ

0
[σ2

f (s)− 2σf (s)σh (s, τ) + σ2
h (s, τ)]dsG

−1SffG
−1

=
1

µ

[
(τ − ρ)− 2

1

2ρ
(τ − ρ)2 +

1

3ρ2
(ρ− τ)2 (4ρ− τ)

]
G−1SffG

−1

=

(
τ − ρ

µ

)(
1− (τ − ρ)2

3ρ2

)
G−1SffG

−1. (41)
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Furthermore, from Proposition 2 we have that:

∫ τ

0
ω (s, τ)ω (s, τ)′ ds = µ−1G−1

∫ τ

0
[Iℓ, FB]


[
Ω (s, τ)1/2 − Ω(s, τ − µ)1/2

]
· 1 (s ≤ τ − µ)

+Ω (s, τ)1/2 · 1 (τ − µ < s ≤ τ)


× S


[
Ω(s, τ)1/2 − Ω(s, τ − µ)1/2

]
· 1 (s ≤ τ − µ)

+Ω (s, τ)1/2 · 1 (τ − µ < s ≤ τ)

 [Iℓ, FB]′ dsG−1

= µ−1G−1



(∫ τ
τ−µ σ

2
f (s) ds

)
Sff+(∫ τ

τ−µ σf (s)σh (s, τ) ds
)
[FBShf + SfhB

′F ′]+∫ τ
0

[
(σh (s, τ)− σh (s, τ − µ))2 · 1 (s ≤ τ − µ)

+σ2
h (s, τ) · 1 (τ − µ < s ≤ τ)

]
dsFBShhB

′F ′


G−1 (42)

(i′) Recursive case:

Similar to (i), by imposing −1
2(FBShf +SfhB

′F ′) = FBShhB
′F ′ from condition (22) and from

Proposition 3 the fact that∫ τ

0

[
(σh (s, τ)− σh (s, τ − µ))2 · 1 (s ≤ τ − µ)

+σ2
h (s, τ) · 1 (τ − µ < s ≤ τ)

]
ds = 2

∫ τ

τ−µ
σf (s)σh (s, τ) ds,

we can simplify equation (42) to:∫ τ

0
ω (s, τ)ω (s, τ)′ ds = µ−1G−1

(∫ τ

τ−µ
σ2
f (s) ds

)
G−1 =

µ

µ
G−1SffG

−1 = G−1SffG
−1.

(ii′) Rolling case: Let π† ≡ µ
ρ .

Further, under condition (22), we have:∫ τ

0
ω (s, τ)ω (s, τ)′ ds = µ−1G−1SffG

−1× (43)[∫ τ

τ−µ
σ2
f (s) ds− 2

(∫ τ

τ−µ
σh (s, τ)σf (s) ds

)
+

∫ τ

0

(
[σh (s, τ)− σh (s, τ − µ)]2 · 1 (s ≤ τ − µ)

+σ2
h (s, τ) · 1 (τ − µ < s ≤ τ)

)
ds

]
.

By Proposition 3, equation (43) simplifies to:

Case (a): If µ > ρ, then
∫ τ
0 ω (s, τ)ω (s, τ)′ ds = 2

3π† ;

Case (b): If µ < ρ, then
∫ τ
0 ω (s, τ)ω (s, τ)′ ds = 1− 1

3

(
π†)2 ;
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Proof of Theorem 8. (a) From Proposition 2 and Theorem 5 we have

Wt,m = mθ̂jV
−1
θ,τ θ̂j

⇒
[
Bℓ

(∫ τ

0
ω̃ (s, τ) ω̃ (s, τ)′ ds

)
− Bℓ

(∫ τ−µ

0
ω̃ (s, τ) ω̃ (s, τ)′ ds

)]′
V −1
θ,τ ×

×
[
Bℓ

(∫ τ

0
ω̃ (s, τ) ω̃ (s, τ)′ ds

)
− Bℓ

(∫ τ−µ

0
ω̃ (s, τ) ω̃ (s, τ)′ ds

)]
Under condition (22) and by the results in Proposition 7:

(i) Recursive case:

Vθ,τ = Vθ = G−1SffG
−1 and Bℓ

(∫ τ
0 ω̃ (s, τ) ω̃ (s, τ)′ ds

)
=
(
G−1SffG

−1
)1/2

µ−1/2Bℓ (τ − ρ) .

Thus,

Wt,m ⇒ µ−1 [Bℓ (τ − ρ)− Bℓ (τ − µ− ρ)]′ [Bℓ (τ − ρ)− Bℓ (τ − µ− ρ)] .

(ii) Rolling case:

From Proposition 7, Vθ,τ = Vθ =
(
G−1SffG

−1
) [(

2
3π†

)
· 1 (µ ≥ ρ) +

(
1− 1

3

(
π†)2) · 1 (µ < ρ)

]
.

Furthermore, when τ − ρ < ρ,

Bℓ

(∫ τ

0
ω̃ (s, τ) ω̃ (s, τ)′ ds

)
= Bℓ

((
τ − ρ

µ

)(
1− (τ − ρ)2

3ρ2

)
G−1SffG

−1

)
=
(
G−1SffG

−1
)1/2

µ−1/2Bℓ

(
(τ − ρ)

(
1− (τ − ρ)2

3ρ2

))
.

Alternatively, when τ − ρ > ρ,

Bℓ

(∫ τ

0
ω̃ (s, τ) ω̃ (s, τ)′ ds

)
=
(
G−1SffG

−1
)1/2

µ−1/2Bℓ

(
2

3
ρ

)
.

Thus,

Bℓ

(∫ τ

0
ω̃ (s, τ) ω̃ (s, τ)′ ds

)

=
(
G−1SffG

−1
)1/2

µ−1/2

 Bℓ

(
(τ − ρ)

(
1− (τ−ρ)2

3ρ2

))
· 1 (µ+ ρ ≤ τ < 2ρ)

+Bℓ

(
2
3ρ
)
· 1 (τ > 2ρ)

 ,

Bℓ

(∫ τ−µ

0
ω̃ (s, τ − µ) ω̃ (s, τ − µ)′ ds

)

=
(
G−1SffG

−1
)1/2

µ−1/2

 Bℓ

(
(τ − µ− ρ)

(
1− (τ−µ−ρ)2

3ρ2

))
· 1 (ρ ≤ τ − µ < 2ρ)

+Bℓ

(
2
3ρ
)
· 1 (τ − µ > 2ρ)

 .
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Consequently,

Bℓ

(∫ τ

0
ω̃ (s, τ) ω̃ (s, τ)′ ds

)
− Bℓ

(∫ τ−µ

0
ω̃ (s, τ − µ) ω̃ (s, τ − µ)′ ds

)

=
(
G−1SffG

−1
)1/2

µ−1/2

 Bℓ

(
(τ − ρ)

(
1− (τ−ρ)2

3ρ2

))
−Bℓ

(
(τ − µ− ρ)

(
1− (τ−µ−ρ)2

3ρ2

))  · 1 (µ+ ρ ≤ τ < 2ρ)

+
[
Bℓ

(
2
3ρ
)
− Bℓ

(
(τ − µ− ρ)

(
1− (τ−µ−ρ)2

3ρ2

))]
· 1 (2ρ ≤ τ < 2ρ+ µ)

+0 · 1 (τ > 2ρ+ µ)


≡ Bℓ

(∫ τ

0
ω (s, τ)ω (s, τ)′ ds

)
.

Thus,

Wt,m ⇒ Bℓ

(∫ τ

0
ω (s, τ)ω (s, τ)′ ds

)′
V −1
θ,τ Bℓ

(∫ τ

0
ω (s, τ)ω (s, τ)′ ds

)
=

= µ−1

{(
2

3π†

)
· 1 (µ ≥ ρ) +

(
1− 1

3

(
π†
)2)

· 1 (µ < ρ)

}−1

×[{
Bℓ

(
(τ − ρ)

(
1− (τ − ρ)2

3ρ2

))
− Bℓ

(
(τ − µ− ρ)

(
1− (τ − µ− ρ)2

3ρ2

))}
· 1 (µ+ ρ ≤ τ < 2ρ)

+

{
Bℓ

(
2

3
ρ

)
− Bℓ

(
(τ − µ− ρ)

(
1− (τ − µ− ρ)2

3ρ2

))}
· 1 (2ρ < τ ≤ 2ρ+ µ)

]′
×
[{

Bℓ

(
(τ − ρ)

(
1− (τ − ρ)2

3ρ2

))
− Bℓ

(
(τ − µ− ρ)

(
1− (τ − µ− ρ)2

3ρ2

))}
· 1 (µ+ ρ ≤ τ < 2ρ)

+

{
Bℓ

(
2

3
ρ

)
− Bℓ

(
(τ − µ− ρ)

(
1− (τ − µ− ρ)2

3ρ2

))}
· 1 (2ρ < τ ≤ 2ρ+ µ)

]
.

(b) Follows directly from Proposition 6 using the same arguments in the proof of (a).
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10.2 Additional Critical Value Tables

Table A.1a. Critical Values for the Fluctuation Rationality Test

Recursive Case

Panel A. 10% Significance Level

ℓ ρ = 0.5;µ = 0.25 ρ = 0.5;µ = 0.3 ρ = 0.3;µ = 0.25 ρ = 0.3;µ = 0.3

1 5.9556 5.4013 6.9650 6.4921

2 9.2245 8.5250 10.1145 9.7747

3 11.3230 10.2160 12.2866 11.7772

4 13.2317 12.1300 14.1436 13.4497

5 14.6695 13.6400 15.8784 15.3008

6 16.5875 15.5707 18.3062 17.8984

7 18.8531 17.6269 19.7706 19.4035

8 19.5394 18.2724 21.4959 20.6359

9 22.0456 20.9694 23.3407 22.6708

10 23.0327 21.7260 24.6531 23.7097

Panel B. 5% Significance Level

ℓ ρ = 0.5;µ = 0.25 ρ = 0.5;µ = 0.3 ρ = 0.3;µ = 0.25 ρ = 0.3;µ = 0.3

1 7.6103 6.8123 8.1529 8.0414

2 10.7828 10.3909 12.1409 11.1946

3 12.6497 11.8263 14.2097 13.1495

4 14.8763 14.2381 15.8727 15.4504

5 16.4838 16.1415 17.9421 17.4355

6 19.1056 18.1881 20.6415 19.9306

7 20.3082 19.5852 21.5059 20.9714

8 21.9336 20.6173 23.5220 22.9359

9 24.6251 23.6866 25.6793 25.6762

10 25.3684 24.1207 26.8021 25.7949
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Panel C. 1% Significance Level

ℓ ρ = 0.5;µ = 0.25 ρ = 0.5;µ = 0.3 ρ = 0.3;µ = 0.25 ρ = 0.3;µ = 0.3

1 10.2989 9.6853 11.7167 10.7821

2 14.7120 14.8595 16.8443 16.0830

3 17.1015 16.0334 19.4287 16.9283

4 17.8342 17.2788 18.7771 18.4869

5 21.2392 20.5449 22.3047 23.3458

6 23.1487 22.8962 23.6097 23.9932

7 24.5539 23.6424 25.8011 26.0693

8 27.4389 25.7965 28.1082 27.6579

9 29.1371 27.9073 30.7444 28.9690

10 29.8898 28.5949 32.6835 29.7556

Note. The table reports the critical values, κα,ℓ, for several restrictions (ℓ) at α =10%, 5% and 1% significance

levels for max
j∈{R+m,...,T} Wj,m for the recursive scheme under condition (22). Critical values are based on

T = 1000 and 1000 Monte Carlo simulations; ρ = R/T and µ = m/T .
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Table A.1b. Critical Values for the Fluctuation Rationality Test

Rolling Case

Panel A. 10% Significance Level

ℓ ρ = 0.5;µ = 0.25 ρ = 0.5;µ = 0.3 ρ = 0.3;µ = 0.25 ρ = 0.3;µ = 0.3

1 6.4740 5.5899 7.7008 7.2863

2 9.1746 8.5913 10.7956 10.6739

3 11.5663 10.8638 12.9363 12.3039

4 13.2258 12.6272 14.4234 13.9984

5 14.9127 14.6108 17.0396 16.5904

6 16.4976 15.6346 19.0793 18.3600

7 18.7578 17.7502 20.5095 19.8632

8 19.9329 19.2351 22.7822 22.0157

9 21.7496 21.2777 23.9299 23.9710

10 23.1398 22.2947 25.2720 24.8407

Panel B. 5% Significance Level

ℓ ρ = 0.5;µ = 0.25 ρ = 0.5;µ = 0.3 ρ = 0.3;µ = 0.25 ρ = 0.3;µ = 0.3

1 7.7122 6.9621 8.8102 8.5989

2 10.5702 10.0698 12.4778 12.1265

3 13.2956 12.3069 14.5513 13.9501

4 14.8771 14.2805 16.6307 15.6392

5 16.8451 16.6441 19.0969 18.6127

6 18.5144 17.5945 20.9080 20.1921

7 21.0426 19.7563 22.6405 21.9120

8 22.9293 21.4715 25.1263 24.2192

9 24.2818 23.4890 26.4981 26.1489

10 25.7621 24.6734 26.8059 26.7959
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Panel C. 1% Significance Level

ℓ ρ = 0.5;µ = 0.25 ρ = 0.5;µ = 0.3 ρ = 0.3;µ = 0.25 ρ = 0.3;µ = 0.3

1 11.0943 10.3372 11.7440 11.0335

2 13.7842 14.1051 15.6558 15.7895

3 17.2460 16.4848 18.3441 18.0914

4 18.3709 18.0079 21.0888 21.4351

5 21.6826 20.6014 22.3863 22.5591

6 22.7820 22.9287 25.9931 25.1753

7 24.9451 23.4760 26.5961 25.3780

8 27.9311 26.4139 28.7270 28.1257

9 30.1262 28.8866 32.1298 30.3945

10 31.0603 30.4121 31.7719 32.4430

Note. The table reports the critical values, κα,ℓ, for several restrictions (ℓ) at α =10%, 5% and 1% significance

levels for max
j∈{R+m,...,T} Wj,m for the rolling scheme under condition (22). Critical values are based on T = 1000

and 1000 Monte Carlo simulations; ρ = R/T and µ = m/T .
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Table A.1c. Critical Values for the Fluctuation Rationality Test

Survey and Model-Free Forecasts

Panel A. 10% Significance Level

µ̃

ℓ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 10.0909 8.8274 7.7116 6.9555 6.4272 5.8410 4.9404 4.8508 4.0096

2 13.2456 11.4773 10.7955 9.6482 9.3648 8.3442 7.7478 7.4669 6.2243

3 15.9915 14.2049 13.3396 11.6461 11.4939 10.4839 9.3900 8.9699 7.9423

4 18.4447 15.5897 15.1254 13.8661 13.2415 12.7312 11.5331 10.7335 9.3509

5 19.9690 18.2447 16.7190 15.7116 15.0672 14.1355 13.1798 12.1317 11.4857

6 22.3413 20.3183 19.1924 18.0867 17.3395 15.6658 14.7640 13.4408 12.3823

7 24.3462 22.3182 21.0891 20.0822 18.4705 17.7375 16.8276 15.6473 13.9220

8 26.5930 23.8825 22.4070 21.6763 20.1078 18.7631 18.1456 17.0475 15.8832

9 27.8409 26.0117 24.5040 23.3912 21.4939 20.6265 19.2173 18.0560 17.2398

10 29.2933 27.1103 25.8483 24.6502 23.4647 22.5659 20.6670 20.0081 18.4020

Panel B. 5% Significance Level

µ̃

ℓ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 11.8290 10.5637 8.9252 8.1468 8.1409 7.2803 6.4978 6.0837 5.4695

2 14.9966 13.0846 12.8141 10.9084 11.1314 9.9386 9.1724 9.0589 7.8305

3 17.6768 15.7548 15.0608 13.4383 13.2113 12.6018 10.9597 10.8426 9.4727

4 19.8434 17.6051 17.0158 16.3186 15.1404 14.7573 13.5928 13.1087 10.8243

5 21.7091 20.4659 18.7186 18.2152 17.1092 15.6317 15.4842 13.9418 13.6335

6 24.2721 22.4870 20.9717 20.2839 20.2971 17.8602 16.5583 15.4633 14.4789

7 26.2869 24.2644 22.8543 21.6818 20.5974 20.1200 19.0697 17.7064 15.9126

8 28.3030 25.7461 24.3315 23.4497 22.4328 21.1563 20.3632 19.1440 18.1475

9 29.5489 27.9249 26.8101 25.2662 24.2510 22.7821 21.7109 20.2745 19.7147

10 31.7548 29.4709 27.5980 27.0357 25.3011 25.3250 23.4556 22.6180 21.6647
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Panel B. 1% Significance Level

µ̃

ℓ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 15.0484 14.0966 12.0133 12.5257 11.2177 10.5051 9.4237 8.5435 8.2030

2 18.5865 15.9096 16.8898 14.1998 14.0067 14.1862 12.5407 12.8689 10.4675

3 22.2589 18.4610 18.1309 16.6749 16.6152 16.6209 15.1820 14.2981 12.7461

4 23.2931 22.6241 20.4215 20.1829 18.5263 18.7161 17.1985 16.8407 15.3503

5 25.9859 24.9017 22.1130 22.3233 22.0671 19.2611 19.5215 17.5694 18.9347

6 28.3701 27.1948 25.1033 24.2014 24.8307 22.2983 20.9119 19.1080 18.0740

7 31.4425 28.9881 27.1075 26.9725 24.3925 24.0897 24.2268 21.7648 20.5248

8 32.4669 29.5149 28.6144 28.1559 26.8484 26.2502 25.2785 23.0942 22.8633

9 33.7114 35.2864 31.3305 29.5492 29.0904 28.2170 25.6922 26.0238 24.8479

10 36.6704 33.1601 32.2650 32.6074 30.0138 31.1782 27.3047 25.9979 26.2313

Note. The table reports the critical values, κα,ℓ, for several restrictions (ℓ) at α =10%, 5% and 1% significance

levels for max
j∈{R+m,...,T} Wj,m for the case when parameter estimation error is irrelevant as in Corollary 9 in the

paper. Critical values are based on P = 1000 and 1000 Monte Carlo simulations; µ̃ = m/P .
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10.3 Additional Data Figures

Figure A.1: Inflation Forecasts
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Note. The figure plots Greenbook, BCEI and SPF forecasts of inflation for various forecast horizons h in

conjunction with the realized values of inflation, labeled as “actual,” for the corresponding horizon. If a forecast for

a specific horizon by the corresponding agency does not exist, it is depicted as a missing value.
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