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1 Introduction

The 1990’s have seen a remarkable development in the specification of DSGE models.

The literature has added considerable realism to the constructions popular in the 1980’s

and a number of shocks and frictions have been introduced into first generation RBC

models driven by technological disturbances. Steps forward have also been made in

comparing the models’ approximation to the data: while 10 years ago it was standard

to calibrate the parameters of a model and informally evaluate the quality of its fit,

now maximum likelihood or Bayesian estimation of the structural parameters is com-

mon both in academic and policy circles (see e.g. Smets and Wouters (2003), Ireland

(2004), Canova (2004), Rubio and Rabanal (2005), Gali and Rabanal (2005)) and new

techniques have been introduced for evaluation purposes (see Del Negro et. al. (2005)).

Given the complexities involved in estimating state-of-the-art DSGE models and

the difficulties in designing criteria which are informative about their discrepancy to

the data, a strand of the literature has considered less demanding limited information

methods and focused on whether the model matches the data only along certain di-

mensions. Following Rotemberg and Woodford (1997) and others, it is now common

to estimate structural parameters by quantitatively matching conditional dynamics in

response to certain structural shocks (Canova (2002) proposes an alternative limited

information approach where only a qualitative matching of responses is sought). One

crucial but often neglected condition needed for any methodology to deliver sensible

estimates and meaningful inference is the one of identifiability: the objective function

must have a unique minimum and should display ”enough” curvature in all relevant

dimensions. Since dynamic responses depend nonlinearly on the structural parameters,

it is unknown if these identifiability conditions are met and far from straightforward to

check for them in practice.

This paper investigates identifiability issues in DSGE models and explores their

consequences for parameter estimation and model evaluation when the objective func-

tion measures the distance between impulse responses obtained from a structural VAR

and from a model. While the approach we consider falls into the class of moment esti-

mators, and results about the interaction between identification and estimation exist in

the literature (see e.g. Choi and Phillips (1992), Stock and Wright (2000)), to the best

of our knowledge we are the first to address these issues in the context of DSGE mod-

els. Our special interest in impulse response matching is motivated by the popularity
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of the technique among applied researchers and the fact that several peculiarities of the

procedure make standard theoretical conclusions inapplicable. Our work investigates

identification in frameworks commonly used in modern macroeconomics; examines its

consequences for structural parameter estimation; and provides simple diagnostics to

detect problems in practice.

We start in Section 2 discussing the generics of identification and providing defini-

tions for several practically relevant situations. Section 3 provides examples of simple

structures generating four commonly encountered problems: observational equivalence;

under-identification; partial and weak identification; and limited information identi-

fication problems. In the context of these examples we study: (a) the consequences

of altering the weights responses receive in the objective function and the number of

variables considered in the analysis; (b) whether and in what way different objective

functions provide different identification of the parameters; (c) whether higher order

solution techniques necessarily improve parameter identifiability, (d) what features of

the economic environment are potentially responsible for the problems. It turns out

that all identification problems lead to objective functions with large flat surfaces in

the economically reasonable portion of the parameter space; that identification depends

on the objective function used, and that Bayesian methods, if properly employed, can

help to detect identification problems but, if improperly used, may cover them up.

We also show that the common practice of fixing some of the troublesome parameters

at arbitrary values, may create distortions in the distribution of parameter estimates

and that identification failures are not necessarily reduced when higher order solution

techniques are employed contrary, for example, to the likelihood based conclusions of

An and Schorfheide (2005). Finally, we find that these problems emerge when the law

of motion of states of the model is relatively insensitive to variations in certain para-

meters. Hence parameter identification, in practice, depends on the structure of the

model, the solution technique, the objective function and the type of information used.

Section 4 investigates the interaction between parameters’ identifiability, shock

identification and small samples. We argue in the context of a three equation New-

Keynesian model that many structural parameters are only partially or weakly identi-

fiable from impulse responses and that limited information identification problems are

present. Our results suggest that flat objective functions lead to serious biases in large

sample estimates and uninformative standard errors, and that small samples and in-

correct shock identification pile up to induce major distortions in parameter estimates.
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Section 5 examines what happens when the model is unknown and an investigator

uses the dynamic implications of a small number of shocks to find estimates of the para-

meters. We are interested in examining the case in which, because of near-observational

equivalence of alternative economic structures, an investigator may end up estimating

as significant features which do not appear in the data generating process. In the

context of a state-of-the-art model with real and nominal frictions, we demonstrate

that many of the features introduced to generate endogenous persistence are only very

weakly identified. Hence, investigators using responses to monetary and/or technology

shocks could mistakenly select the wrong model with high degree of confidence.

Section 6 presents simple diagnostics to detect identification problems and uses

them to highlight why problems in the model used in section 5 emerge. Section 7

summarizes the results and provides suggestions for empirical practice.

Chari, et. al. (2005), Christiano, et. al. (2006) and Fernandez-Villaverde et. al

(2005) have recently studied invertibility problems in DSGE models and the ability of

structural VARs to recover deep parameters and the dynamics in response to shocks.

One interpretation of their evidence is that when invertibility problems are present,

the empirical strategy of matching impulse responses is potentially flawed. Our work

indicates that even when invertibility problems are absent, matching impulse responses

may be problematic and inference erratic because of widespread identification problems.

In this sense, the issues we address complement those brought to light in this literature

but, given their generality, appear to be more relevant in practice.

2 A few definitions

Identification problems have been extensively studied in theory; the literature on this

issue goes back at least to Koopmans (1950), and more recent contributions include

Rothenberg (1971), Pesaran (1981), and Hsiao (1983). While the theoretical concepts

are relatively straightforward, it is uncommon to see these issues explicitly considered

in empirical analyses.

To set ideas, identification has to do with the ability to draw inference about the

parameters of a theoretical model from an observed sample. There are several reasons

that may prevent researchers to perform such an exercise. First, the mapping between

structural parameters and reduced form statistics may not be unique. Hence, different

structural models having potentially different economic interpretations may be indis-

4



tinguishable from the point of view of the chosen objective function. We call this issue

observational equivalence problem. Second, the population objective function may be

independent of certain structural parameters - a structural parameter may disappear

from a log-linearized solution. We call this issue under-identification problem. A special

case of this phenomenon emerges when two structural parameters enter the objective

function only proportionally, making them separately unrecoverable. This phenom-

enon, well known in traditional systems of simultaneous linear equations, is called here

partial identification problem. Third, even though all parameters enter the objective

function independently and the population objective function has a unique minimum,

identification problems may emerge because only a subset of the model’s implications

are used. We name this situation limited information identification problem. Fourth,

even though all parameters enter the objective function independently and the popula-

tion objective function has a unique minimum, its curvature may be ”insufficient”. We

call this phenomenon weak identification problem. One interesting special case arises

when the objective function is asymmetric in the neighborhood of the minimum and

its curvature deficient only in a portion of the parameter space.

We formalize the above concepts as follows. Let m0 be the true model, θ0 be a

h0 × 1 vector of true parameters and θi be a hi × 1 vector parameters of model mi,

i = 1, 2, . . .. Let yT be a sample of data of length T and let the objective function be

g(yT ;mi, θi,W ) = (irf (y
T )− irfm(mi, θi))

0W (irf(yT )− irfm(mi, θi)), where irf(yT )

is a k×1 vector of data-based impulse responses, irfm(mi, θi) is a k×1 vector of impulse
responses obtained with model mi and W is a weighting matrix. A (minimum distance

) estimator for θi is defined as θ̂i(W ) ≡ argminθi(W ) g(y
T ;mi, θi,W ). Furthermore,

g(yT ;mi, θi(W ),W ) ≥ 0 with equality holding if and only if mi = m0.

The identification problems we are interested in can be formulated as follow:

• Observational equivalence between two models. Two modelsm1 andm2 with para-

meters θ1 and θ2 are observationally equivalent if g(yT ;m1, θ̂1(W ),W ) = g(yT ;m2, θ̂2(W ),W ),

all yT .

The next set of definitions refer to the local properties of the objective function.

For global ones, simply let Θ1 = Θ.

• Observational equivalence of two parameter vectors, given a model. Two parame-
ter vectors θ̂1(W ) ∈ Θ1 and θ̂2(W ) ∈ Θ1 are observationally equivalent, given m1, if

g(yT ;m1, θ̂1(W ),W ) = g(yT ;m1, θ̂2(W ),W ) and for any other θ ∈ Θ1, g(yT ;mj , θ̂j ,W ) <

g(yT ;mj , θ,W ), all yT , j = 1, 2.
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• Under-identification of the elements of a parameter vector, given a model : If for
some θ = [θ1, θ2] ∈ Θ11 × Θ21 = Θ1, g(yT ;m1, [θ

1 θ2],W ) = g(yT ;m1, [·, θ2],W ) for all
θ1 ∈ Θ1, and all yT , then θ1 is under-identified.

• Partial identification of the elements of a parameter vector, given a model : If for
some θ = [θ1, θ2] ∈ Θ11 × Θ21 = Θ1, g(yT ;m1, [θ1, θ2],W ) = g(yT ;m1, f(θ1, θ2),W ) for

all yT and for all θ1 ∈ Θ11 and θ2 ∈ Θ21, where f is some continuous function, then θ1

and θ2 are partially identified.

• Limited information identification: If we can write W = SW, where S is a

selection matrix with ones on some elements of the main diagonal and zero everywhere

else in any of the above definitions, then observational equivalence, under and partial

identification are produced by limited informations approaches.

• Weak identification: Weak identification of some of the components of θ1 occurs
if there exists a θ̂1(W ) such that g(yT ;m1, θ̂1(W ),W ) < g(yT ;m1, θ,W ) for all yT and

all θ 6= θ̂1(W ) ∈ Θ1. However, |g(yT ;m1, θ̂1i(W ),W )− g(yT ;m1, θ1i,W )| < � for some

θ1i 6= θ̂1i(W ) ∈ Θ1, i = 1, 2, . . . h1. .
• Asymmetric Weak identification: Asymmetric weak identification is present if

there exists a θ̂1(W ) such that g(yT ;m1, θ̂1(W ),W ) < g(yT ;m1, θ,W ) for all yT and

all θ 6= θ̂1(W ) ∈ Θ1. However |g(yT ;m1, θ̂1i(W ),W ) − g(yT ;m1, θ1i,W )| < � for some

θ1i > θ̂1i(W ) ∈ Θ1, or for some θ1i < θ̂1i(W ) ∈ Θ1 i = 1, 2, . . . h1.

3 Identification problems in DSGE models

This section provides a few examples intended to show (a) the pervasiveness of identi-

fication problems in DSGE models, (b) the consequences of using limited information

approaches for parameter identification, (c) the advantages/disadvantages of employing

different objective functions, (d) the relative informational gain obtained using higher

order solution methods.
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3.1 Observational equivalence: Structural models have the same im-
pulse responses.

Consider the following three models:

yt =
1

λ2 + λ1
Etyt+1 +

λ1λ2
λ1 + λ2

yt−1 + vt (1)

yt = λ1yt−1 + wt (2)

yt =
1

λ1
Etyt+1 where yt+1 = Etyt+1 + et (3)

where λ2 ≥ 1 ≥ λ1 ≥ 0 and vt, wt and et are iid processes with zero mean and

variance σ2v, σ
2
w, σ

2
e respectively. It is well known that the unique stable rational

expectations solution of (1) is yt = λ1yt−1 + λ2+λ1
λ2

vt and that the stable solution of (3)

is yt = λ1yt−1 + et. Therefore, if σw = σe =
λ2+λ1
λ2

σv, a unitary impulse in the three

innovations will produce the same responses of yt+j , j = 0, 1, . . ..

What makes the three processes equivalent in terms of impulse responses? Clearly,

the unstable root λ2 in (1) enters the solution only contemporaneously. Since the vari-

ance of the shocks is not estimable from normalized impulse responses (any value simply

implies a proportional increase in all the elements of the impulse response function),

we can arbitrarily select so as to capture the effects of the unstable root.

While the models in (1)-(3) are stylized, it should be kept in mind that many

refinements of currently used DSGE models add some backward looking component to

a standard forward looking one and that the current debate about the great inflation

moderation in the US relies on the existence of determinate vs. indeterminate solutions

to explain the evidence. What this example suggests is that these features may be

indistinguishable when one looks at impulse responses. Therefore, information external

to the models needs to be brought in to disentangle various structural representations

(see Lubik and Schorfheide (2004), An and Schorfheide (2005) and Nason and Smith

(2005) for similar examples). Note that the equivalence results presented here are the

basis for Beyer and Farmer’s (2004) claim that the data cannot distinguish whether

a Phillips curve is backward looking or forward looking and are the cornerstone of

Pesaran’s (1981) critique of tests of rational vs. adaptive expectations models.

Examples of more complicated setups which produce observationally equivalent

structures appear in Ma (2002), Kim (2003), Altig et. al. (2004) and Ellison (2005).
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3.2 Under-identification: Structural parameters disappearing from
impulse responses.

Consider the following three equations model:

yt = a1Etyt+1 + a2(it −Etπt+1) + c1 + v1t (4)

πt = a3Etπt+1 + a4yt + c2 + v2t (5)

it = a5Etπt+1 + c3 + v3t (6)

where yt is the output gap, πt the inflation rate, it the nominal interest rate and c1, c2, c3

are constants. The first equation is a forward looking IS curve, the second a forward

looking Phillips curve and the third characterizes monetary policy. Since there are no

states, the solution is a linear in vjt, j = 1, 2, 3 and given by:

 yt
πt
it

 =
 a2c3+c1−a3a2c3−a3c1+c2a5a2−c2a2

1−a3−a1+a1a5−a4a5a2+a4a2−c2+a1c2−a4a2c3−a4c1
1−a3−a1+a1a5−a4a5a2+a4a2

a5c2+c2a5a1−a5a4c1−c3+c3a3+c3a1−c3a1a3−a2c3a4
1−a3−a1+a1a5−a4a5a2+a4a2

+
 1 0 a2

a4 1 a2a4
0 0 1

 v1t
v2t
v3t


A few useful points can be made. First, the parameters a1, a3, a5 disappear from

the dynamics in response to shocks. Interestingly, they are those characterizing the

forward looking dynamics of the model. Second, different shocks carry different infor-

mation for the parameters: for example, responses to v1t allow us to recover only a4;

while responses to v2t have no information for either a4 or a2. Similarly, responses of

different variables to each shock carry different information about the structural para-

meters. Third, different objective functions may have different information about the

parameters. For example, if in addition to the dynamics in response to shocks one

also considers steady state information (the constant in the solution), one could have

some hope of identifying some of the missing parameters. Nevertheless, it should be

clear that since six unknown parameter enter the 3× 1 vector of constants, not all the
parameters will be identifiable even in this latter case.

What do we learn from this example? First, the dynamics of the model may not

contain information about certain parameters of interest. Second, while appropriately

choosing the objective function may reduce identification problems, there is no guar-

antee that it will solve them. Third, matching responses to a limited number of shocks

may exacerbate identification problems.
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3.3 Partial and weak identification

The situations considered in the two previous examples are, in a way, pathological. In

practice, there are less extreme but equally interesting settings where the population

objective function (locally) has a unique minimum and no parameter disappears, but

identification problems may still emerge.

To show this we use a standard RBC structure. We work with the simplest version

of the model since we can study whether and how structural parameters affect the

impulse responses and therefore highlight both the problems and the reasons for their

occurrence. The social planner maximizes E0
P∞

t=0 β
t c
1−φ
t
1−φ and the resource constraint

is ct + kt = kηt−1zt + (1 − δ)kt−1, where ct is consumption and φ is the risk aversion

coefficient, zt is a first order autoregressive process of with persistence ρ, steady state

value zss and variance σ2e, kt−1 is the current capital stock, η is the share of capital

in production and δ the depreciation rate of capital. The parameters of interest are

θ = [β, φ, δ, η, ρ, zss]. Using the method of undetermined coefficients and letting output

be yt ≡ kηt−1zt, the solution for wt = [zt, kt, ct, yt, rt], in log-deviations from the steady

state, is of the form Awt = Bwt−1 +Cet where:

A =


1 0 0 0 0
−vkz 0 0 0 0
−vcz 0 0 0 0
−vyz 0 0 0 0
−vrz 0 0 0 1

 B =


ρ 0 0 0 0
0 vkk 0 0 0
0 vck 0 0 0
0 vyk 0 0 0
0 vrk 0 0 1

 C =


1
0
0
0
0


vkk =

1
2γ−

q
(12γ)

2 − β−1; vkz =
(1−β(1−δ))ρ−φ(1−ρ) yss

css

(1−β(1−δ))(1−η)+φvck+φ(1−ρ) ksscss
; vck = (β−1−vkk) kss

css ;

vcz =
yss

css − kss

css vvk, γ =
(1−β(1−δ))(1−η)(1−β+βδ(1−η))

φηβ+β−1+1 and the superscript ss indicates

steady states values. We choose β = 0.985, φ = 2.0, ρ = 0.95, η = 0.36, δ = 0.025, zss =

1 and use the model solution to construct ”true responses”. To show the features

of the objective function, we compute the distance between the ”true responses” and

the responses obtained varying one or two parameters at a time in an economically

reasonable neighborhood of the selected values. Twenty equally weighted responses of

xt = [kt, ct, yt, rt] are used in computing the objective function.

The first row of Figure 1 presents (the negative of) two of these three-dimensional

surfaces and the corresponding contour plots. Each point on the graph gives the dis-

tance between the responses of xt given the true parameters and those obtained with

the true parameters except for (φ, ρ) or (δ, β), which take the values on the horizontal

9



axes. While there is a unique minimum in correspondence of the true parameter vector,

the objective function has approximately similar height when the depreciation rate δ

and the discount factor β, run from (δ = 0.005, β = 0.975) up to (δ = 0.03, β = 0.99),

indicating that the two parameters could only be partially identifiable. Interestingly

the 0.01 contour includes the whole range of economically interesting values of these

two parameters. In addition, the objective function is quite flat in some dimensions.

For example, the persistence parameter ρ is weakly identified in the interval [0.8,1.0].

These are not isolated cases: the share of capital η is also only weakly identifiable in

the range [0.3,0.6] and another ridge appears plotting the objective function against

zss and the depreciation rate δ.

Given our solution, we can check which element of A and B is responsible for this

state of affairs. It turns out that the objective function is flat in ρ because the dynamics

of the capital stocks are only weakly influenced by this parameter. Since the law of

motion of the capital stock determines the dynamics of ct, yt, rt, their responses carry

little additional information about this parameter. The local derivatives of vkk and vkz

with respect to β and δ have similar magnitude but opposite sign. Hence, the dynamics

of the capital stock are also roughly insensitive to proportional changes in these two

parameters.

The distance surface plotted in the first row of figure 1 uses the full vector of

responses and equally weight responses at all horizons. Would its shape change if,

say, only consumption and output responses were used, or responses were weighted by

1/h2, where h = 1, . . . , 20? In the first setup one would expect some loss of information

relative to the baseline case; the question is how large the loss is. In the second setup,

the outcome is unclear: identifiability could improve if information in long horizons is

noisy or worsen because cross horizon restrictions are partially neglected. The second

and third rows of Figure 1 shows that both choices lead to a uniform loss of curvature

in the objective function but to minor shape changes. Therefore, cross equation and

cross horizons restrictions do help with the identification of these parameters.

One may wonder if matching the coefficients of the D matrix in the VAR(1) rep-

resentation : wt = Dwt−1 + vt, where D = A−1B and vt = A−1Cet, as suggested by

Smith (1993), would help in the identification purposes. Intuitively, this choice could

be beneficial because shocks’ identification is entirely sidestepped, but could also be

detrimental since information present in vt is neglected. The fourth row of Figure 1

indicates that the latter dominates.
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Figure 1: Distance surfaces and contour plots; basic, subset, weighted and matching

VAR

For empirical purposes, it is important to know whether identification problems

depend on the objective function or are intrinsic to the model, in which case the choice

of objective function is irrelevant. To distinguish between these two alternative we

have examined the shape of the likelihood of the model, computed by generating 250
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observations1 and assuming zt to be normally distributed with σz = .001. Since model

misspecification is not an issue here, the likelihood function provides a natural upper

"identification bound" of the parameters. If the likelihood function displays identifica-

tion problems, we cannot hope to do better by using limited information approaches.

Having a well-behaved likelihood is thus a necessary, but not sufficient condition for

proper estimation 2.

In general, identification problems seem less acute when the likelihood function is

used: there are some flat areas but contour plots are much better behaved and, for

example, β and δ can be pinned down with much higher precision (see top panel in

figure 2). Hence, at least in the context of this model, partial and weak identification

problems are to a large extent related to the choice of objective function.
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Because the likelihood function of DSGE models is typically ill-behaved, it has now
1As the economic model is stochastically singular, we have added normally distributed measurement

error to each series in order to be able to compute the likelihood function.
2The discussion here excludes the possibility that particular frequencies of the spectrum carry special

information about the parameters, in which case the likelihood function of appropriately filtered data
may be have better identification properties than the likelihood function of the true data.
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became common to employ Bayesian methods for estimation. Given the recent empha-

sis, a few words contrasting identification in classical and Bayesian frameworks, are in

order. Posterior distributions are proportional to the likelihood times the prior. If the

parameter space is variation free, that is, there are no implicit constraints on combina-

tions of parameters, the likelihood of the data carries information for the parameters

if the prior and posterior have different features (see Poirier (1998)). When this is

not the case, there is a simple diagnostic for detecting lack of identification. If prior

information becomes more and more diffuse, the posterior of parameters with doubtful

identification features will also become more and more diffuse. Hence, using a sequence

of prior distributions with larger and larger variances one may detect potential prob-

lems 3. Nevertheless, since identification problems have to do with the shape of the

likelihood, they do not disappear when a Bayesian approach is employed.

When the parameter space is not variation free, e.g. because stability conditions

or economically motivated non-negativity constraints are implicitly imposed, the prior

of non-identified parameters may be marginally updated because such restrictions may

make the likelihood informative. In this case, finding that prior and posterior dif-

fer it does not guarantee that parameters are identified 4. If one uses a sequence of

prior distributions with increasing spreads, one can still detect potential identification

problems. Unfortunately, this simple diagnostic is hardly ever used and often prior

distributions are not even reported. This is dangerous: the combination of a tightly

specified prior and auxiliary restrictions on the parameter space can in fact produce

a well behaved posterior even if the economic model per se contains little information

on the parameter of interest. The second row of figure 2 show that this can happen:

here a tight prior on δ generates a lot of curvature in the posterior distribution. Hence,

uncritical use of Bayesian methods, including employing prior distributions which do

not truly reflect the location and spread uncertainty, may hide identification problems

rather than highlighting them.

What do one typically do when partial identification problems emerge? The stan-

dard practice of fixing β will work here since for any value of β, the impulse based

objective function has reasonable curvature in the δ dimension (and viceversa). How-

3There is no problem in eliciting more and more diffuse prior distributions since the parametrization
is given by economic theory.

4As Matthias Villani has pointed out to us, the reason for why prior and posterior differ in this
case is because the prior is not properly marginalized, that is, the fact that the parameter space is not
variation free is neglected.
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ever, such an approach may also induce serious biases, unless the chosen β happens to

be the right one. We show this graphically in Figure 3, where we report contours plots

correctly assuming β = 0.985 and incorrectly assuming β = 0.995. In the latter case,

the maximum of the constrained objective function shifts away from the true value. In

addition, the curvature is accentuated around the wrong value thus giving very precise

parameter estimates.
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Figure 3: Contour Plots

To conclude, this section suggests four important conclusions. First, for identi-

fication purposes, more information is always better than less: neglecting the cross

equations restrictions present in variables, in their covariance matrix and/or at long

horizons may lead to or exacerbate identification problems. Second, while one could

probably be better endowed to answer interesting economic questions if she carefully

selects the objective function, identification problems may not vanish if the model is

not explicitly parametrized with an eye to estimation. Third, classical and Bayesian
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approaches face the same identification problems. Formal use of external and reliable

information may give an hedge to the latter in dealing with such problems. Finally,

the practice of fixing some parameters and estimating others may be lead to important

distortions, unless the selected parameters happen to be the true ones.

3.4 Higher order solution methods and identification

Fernandez-Villaverde and Rubio-Ramirez (2005) and An and Schorfheide (2005) have

recently shown that the likelihood function appears to have more curvature when a

second order approximation is used in place of a log-linear one. In this section we are

interested in analyzing whether the distance function obtained by matching responses

using a second order solution has better identification features than the one obtained

using a first order solution. Two contrasting elements make the outcome unpredictable.

First, observation equivalence, under-identification, partial and weak identification may

be reduced when higher order terms (and cross equation restrictions) are brought into

the problem. Second, since responses in second order system depend on the size and

the sign of the shocks and the initial conditions, identification problems could become

more acute in this setup.

To illustrate the potential trade-off existing between first and second order solutions

when matching impulse responses we take a version of an RBC model with (external)

habit in consumption driven by a permanent technology disturbance and a transitory

labor supply shock. Lifetime preferences are given by E0
P

t β
t[log(ct − bc̄t−1)− atNt]

where β is a discount factor, b regulates the evolution of consumption habits, c̄t is the

aggregate level of consumption - taken as given by the agents, at is a labor supply shock

with time series representation ln( at
ρat−1 ) = uat , where u

a
t is iid with variance one and Et

denotes the expectation operator, conditional on the information at time t. We assume

the production function yt = ztNt, where ln( zt
zt−1 ) ≡ uzt , and uzt is iid with variance

one, and the resource constraint is ct = yt.

Detrending the variables by the level of technology, log-linearizing around the steady

state, and considering only responses to labor supply shocks we have

N̂t = (b+ ρ)N̂t−1 − bρN̂t−2 − (1− b)ûat (7)

As Sargent (1978) and Kennan (1988) have argued b and ρ are not separately identified

from (7) unless b = ρ. In fact, the reduced form version of (7) is N̂t = η1N̂t−1 −
η2N̂t−2− η3û

a
t which has two solutions b = 0.5(η1±

p
η21 − 4η2) and ρ = η1− b, where
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η21 − 4η2 = (b− ρ2) ≥ 0. Hence, there are two values of ρ and b consistent with exactly

the same dynamics of hours in response to labor supply shocks: a high value of habit

and a low value of the persistence of labor supply shocks, and a low value of habit and

a high value of the persistence of labor supply shocks. The second order approximation

to the equilibrium condition is:

N̂t = bN̂t−1 +
b(b−1)
2 N̂2

t−1 − (1− b)ât − 1
2 (−(1− b)2 + 1− b)â2t

ât = ρât−1 + uat
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Figure 4: Distance function: ratio of linear to quadratic solution

Figure 4 plots the ratio of the linear to the quadratic distance function when the

true parameters are (b = 0.6, ρ = 0.2); twenty equally weighted responses of N̂t are used

to construct the objective functions; and the size of the shock and the initial conditions

are both integrated out (see Koop, Pesaran and Potter (1996)). Since a value above

one in the vertical scale indicates that the curvature of the linear distance function
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is larger than the curvature of the second order one, figure 4 clearly shows that the

distance function obtained with a second order approximation is not necessarily better

behaved everywhere in the parameter space and that asymmetries could be important.

4 Identification and estimation

Next, we examine what identification problems imply for estimation and inference.

Throughout this section we assume that the investigator knows the correct model and,

for most of it, assume that no misspecification occurs when computing responses. Ini-

tially we endow the researcher with the population responses; later we explore in what

way small samples complicate the inferential task.

To make our points transparent, we employ a well known small scale New-Keynesian

model. We choose this specification because several authors, including Ma (2002), Beyer

and Farmer (2004) and Nason and Smith (2005), have argued that it is liable to some of

the problems we have discussed so far. The log-linearized version of the model consists

of the following three equations:

yt =
h

1 + h
yt−1 +

1

1+ h
Etyt+1 +

1

φ
(it − Etπt+1) + v1t (8)

πt =
ω

1 + ωβ
πt−1 +

β

1 + ωβ
Etπt+1 +

(φ+ 1)(1− ζβ)(1− ζ)

(1 + ωβ)ζ
yt + v2t (9)

it = λrit−1 + (1− λr)(λππt−1 + λyyt−1) + v3t (10)

where h is the degree of habit persistence, φ is the relative risk aversion coefficient,

β is the discount factor, ω the degree of indexation of prices, ζ the degree of price

stickiness, while λr, λπ , λy are policy parameters. The first two shocks follow an AR(1)

with parameters ρ1, ρ2, while v3t is iid. The variances of the shocks are denoted by

σ2i , i = 1, 2, 3.

The model has 14 parameters: θ1 = (σ21, σ
2
2, σ

2
3) are under-identified from scaled im-

pulse responses, while θ2 = (β, φ, ζ, λr, λπ , λy, ρ1, ρ2, h, ω) are the structural parameters

which are the focus of our attention.

Since the model features three shocks, we can construct several limited information

objective functions, obtained considering the responses to only one type of shock, and

a full information one. We take the true parameters to be β = 0.985, φ = 2.0, ζ =

0.68, λr = 0.2, λπ = 1.55, λy = 1.1, ρ1 = 0.65, ρ2 = 0.65, ω = 0.25, h = 0.85, which are

standard in calibration exercises and quite close to, e.g., Rabanal and Rubio-Ramirez
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(2005) estimates of a version of such a model for the US. Twenty equally weighted

responses of the three variables are used to construct the objective function.
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Figure 5: Shape of different objective functions

Figure 5 plots the shape of the objective function in each of the elements of θ2.

Column 1 presents the distance function obtained using responses to v1t, column 2 the
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one obtained using responses to v2t, column 3 the one obtained using responses to v3t

and column 4 the one obtained with all the shocks. In each case we vary one parameter

at the time within the range presented in the x-axis keeping the others fixed at their

”true” values.

The figure displays many interesting features. First, the three limited information

objective functions are flat in several dimensions (see e.g. λr, λy, ω, h). Second, different

shocks have different information about certain parameters (see e.g. ζ, λr). Third,

the objective functions are asymmetric in certain dimensions see, for example, φ, λr, ζ

when cost push shocks are considered. Fourth, there are parameters which are under-

identified by certain shocks: as intuition suggests, the persistence of ,say, the cost

push shock can not be identified considering responses to other shocks. Fifth, even

when responses to all shocks are used, the objective function is still somewhat flat

and asymmetric in several dimensions. It is important to stress that these feature are

independent of the exact values of θ1 and θ2 used (see Canova and Sala (2005) for

details).

Since Figure 5 considers one dimension at the time, ridges in the objective func-

tion are not detectable. Figure 6 shows that indeed ridges are present: responses to

monetary shocks carry little information, for example, about the correct combination

of λy and λπ . This is a bit surprising: since the policy rule is backward looking, a

regression of current interest rates on lagged inflation and lagged output should be able

to separately recover λπ and λy. To explain why λπ and λy are poorly identified, note

that monetary policy induce small responses in the output gap and inflation. Conse-

quently, responses of interest rate are broadly unaffected by changes in λy and λπ. This

is not the case with the other shocks, and the distance function is well behaved when

all shocks are used.

In sum, this prototype model displays an array of potential identification prob-

lems. Next, we investigate what happens to parameter estimates and to statistical and

economic inference in this situation.

4.1 Asymptotic properties

For the sake of presentation, we will focus on estimates obtained matching responses

to monetary policy shocks which appear to produce the distance function with the

worst identification properties and are those on which the literature has focused most

of its attention. Figure 7 reports the histogram of estimates obtained starting the
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minimization routine 500 times from different initial conditions uniformly drawn within

the ranges considered on the horizontal axis. Superimposed with a vertical bar is the

true parameter value.
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Figure 6: Distance function and contour plots

Histograms are obtained eliminating all cases where convergence failed; or the es-

timated parameters produce imaginary or indeterminate solutions. The histograms do

not capture sampling uncertainty associated with the estimation of structural parame-

ters. Instead, the figure displays the multivariate mapping from impulse responses to

structural parameters. If the objective function were free of identification problems,

this mapping would be univocal: from any starting point the true vector would be

reached and the histograms would all be degenerate 5.

5Failure to reach the true parameter could of course be the result of a poor minimization routine
rather than of identification problems. We have checked for this possibility in a number of ways and
found that absent identification problems our routine always finds the true parameter vector from any
initial conditions.
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Figure 7: Distribution of estimates

There are three features of figure 7 worth discussing. First, there is a tendency to

overestimate β. Second, the mode of the distribution of estimates of λπ is located at

2.64, well above the true value of 1.55. Third, the histogram of λy has two modes, one

at around zero and one at 1.85, and the one of λr has similar features.

Would it be possible to detect these estimation failures, for example, looking at the

minimized value of the objective function or to the resulting impulse responses? The

answer is negative. The objective function is within the tolerance level (10−7) for all

the parameter combinations generating figure 7 and, as shown in figure 8, population
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and estimated responses to monetary shocks are indistinguishable. Interestingly, re-

sponses to IS and cost push shocks are also similar to the true ones. Hence, parameter

vectors with potentially different economic interpretations are indistinguishable when

normalized responses are used to construct objective functions.
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Figure 8: Impulse responses

For forecasting purposes these differences are probably unimportant: as long as

the fit and the forecasting performance is the same, the true nature of the DGP does

not matter. However, policy analyses and conditional forecasting exercises conducted

using the estimated parameter vector may deviate from those obtained with the true

one. Hence, it is unwise to attach any economic interpretation to the estimates or draw

conclusions about how the economy works from these exercises and this is true even in

the ideal situation considered in this subsection.
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4.2 Small samples

The distortions present in figure 7 may be magnified when only estimates of impulse

responses obtained with samples of small or medium sizes are available. Furthermore,

it is conceivable to have situations where the objective function is well behaved but im-

portant identification problems emerge just because of small samples. In this subsection

we are interested in (a) quantifying the importance of these problems when samples of

the size typically used in macroeconomics are employed to compute responses and (b)

highlight some of the properties of the estimates of parameters with problematic iden-

tification features. We focus again our attention on responses to policy shocks, since

the model implies that reduced form interest rate innovations are the true monetary

policy shocks. For the majority of this subsection we still assume that the investiga-

tor correctly identifies monetary disturbances. Later we examine what happens when

shock identification fails. Using the log-linearized solution, we simulate 200 time-series

for interest rates, the output gap and inflation for T = 120, 200, 1000, estimate an

unrestricted VAR 6 on the simulated data, compute impulse responses and bootstrap

confidence bands. We use the resulting confidence bands to build a diagonal weighting

matrix: weights are inversely proportional to the uncertainty in the estimates.

Table 1 presents a summary of our estimation results. We report the true parame-

ters, the mean estimate, the numerical standard errors computed across replications

(in parenthesis) and the percentage bias (in brackets).

A few features are worth commenting upon. First, biases are evident in the estimates

of the partially identified parameters (λπ, λy), the weakly identified parameters (ζ, ω, h

and λr) and the under-identified parameters (ρ1, ρ2). Note that even with 250 years

of quarterly data major biases remain. Second, numerical standard errors are large for

the partially identified parameters and invariant to sample size for the under-identified

ones. Third, parameter estimates do not converge to population values as T increases.

Finally, and concentrating on T = 200, estimates suggest an economic behavior which is

somewhat different from the one characterizing the DGP. For example, it appears that

price stickiness is stronger and the Central Bank reaction to the output gap and inflation

is equally strong. Once again, armed just with impulse responses, an investigatior has

little possibility to detect such interpretation problems.

6We checked that the VAR is able to correctly estimate the true impulse responses with the correct
identification when T = 5000.
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Table 1: NK model. Matching monetary policy shocks
True T = 120 T = 200 T=1000 T=1000 wrong

β 0.985 0.984( 0.007 )[ 0.6 ] 0.985 ( 0.007 ) [0.7 ] 0.986 ( 0.008 ) [ 0.7 ] 0.981 ( 0.004 ) [ 0.6 ]
φ 2.00 2.39 ( 2.81 ) [ 95.2 ] 2.26 ( 2.17 ) [ 70.6] 1.41 ( 1.19 ) [ 48.6 ] 10 ( 0 ) [ 400 ]
ζ 0.68 0.76 ( 0.14 ) [ 19.3 ] 0.76 ( 0.12 ) [ 17.5] 0.83 ( 0.10 ) [ 23.5 ] 0.84 ( 0.06 ) [ 23.7 ]
λr 0.2 0.47 ( 0.29 ) [ 172.0 ] 0.43 ( 0.27 ) [152.6 ] 0.41 ( 0.24 ) [ 132.7 ] 0.02 ( 0.05 ) [ 90.5 ]
λπ 1.55 2.60 ( 1.71 ) [ 98.7 ] 2.22 ( 1.51) [ 78.4 ] 2.18 ( 1.38 ) [ 74.5 ] 4.92 ( 0.33 ) [ 217.5 ]
λy 1.1 2.82 ( 2.03 ) [ 201.6 ] 2.56 ( 2.01 )[ 176.5 ] 2.16 ( 1.68 ) [ 126.5 ] 0.67 ( 0.98 ) [ 78.3 ]
ρ1 0.65 0.52 ( 0.20 ) [ 30.4 ] 0.49 ( 0.21 ) [34.3 ] 0.50 ( 0.19 ) [ 31.0 ] 0.50 ( 0.19 ) [ 31.3 ]
ρ2 0.65 0.49 ( 0.20 ) [ 32.9 ] 0.48 ( 0.21 ) [34.8 ] 0.48 ( 0.21 ) [ 34.7 ] 0.48 ( 0.21 ) [ 34.7 ]
ω 0.25 0.76 ( 0.39 ) [ 238.9 ] 0.73 ( 0.40 ) [232.3 ] 0.65 ( 0.38 ) [ 198.1 ] 0.92 ( 0.27 ) [ 284.0 ]
h 0.85 0.79 ( 0.35 ) [ 30.9 ] 0.76 ( 0.37 ) [ 32.4 ] 0.90 ( 0.21 ) [ 21.3 ] 0 ( 0 ) [ 100 ]

While not very favorable, the results of table 1 are a bit on the optimistic side.

Biases can be amplified if, in addition to small samples, shock identification is also

subject to errors. We report in the last column of table 1 estimates obtained when

T = 1000 and monetary shocks are identified wrongly assuming that interest rates

contemporaneously responds to the output gap and inflation. Biases are of course

evident. More interestingly, standard errors of the estimates are smaller indicating

major shifts in the entire distribution of estimates. Since significance of estimates

is typically an appreciable feature in applied work, it is possible that an investigator

would prefer the (biased) estimates of the last column of the table to the ”insignificant”

estimates obtained in the case monetary shocks are correctly chosen.

In conclusion, identification problems combined with small samples typically lead

to biased estimates of certain structural parameters, to inappropriate inference when

conventional asymptotic theory is used to judge the significance of the parameters and,

possibly, to wrong economic interpretations. In addition, the practice of showing that

model’s responses computed using the estimated parameters lie within the confidence

bands of responses estimated from the data may be uninformative, as the objective

function is close to zero at a variety of different parameter values.

4.3 Linking the results to the literature

Under-identification and weak identification have been recognized to be serious esti-

mation problems. Choi and Phillips (1992), Stock and Wright (2000) have shown the

consequences these two phenomena have on the asymptotic properties of estimates

in IV and GMM setups. Choi and Phillips showed that under-identification produce

asymptotic distributions of estimates which strongly deviate from normal; Stock and

Wright that identification problems in GMM frameworks produce inconsistent esti-

mates of weakly or under-identified parameters, that the joint distribution of weakly

(or under-identified) and properly identified parameters is non-standard; and that stan-
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dard t-statistics are, in general, invalid.

Our results are consistent with many of the theoretical predictions derived by these

authors. In particular, we find (i) erratic properties of the estimates of weakly (or

under-identified) parameters as T increases; (ii) standard errors which are large and

do not necessarily decrease with the sample size; (iii) t-tests which are uninformative

about the properties of estimates. However, our results also show that not all the

parameters which appeared to be weakly identified from the third column of figure 5,

display similar properties, see e.g. ω and h.

Stock and Wright also develop an asymptotic theory which is robust to identifi-

cation problems. Since our objective function resembles the objective function they

use, one may wonder whether identification problems can be sidestepped and distor-

tions eliminated using their approach. Unfortunately, their theory is inapplicable in

our case because W is never chosen to be the continuously updating weighting ma-

trix of Hansen et al. (1996). Furthermore, the combination of numerical solutions,

large dimensional parameter space and highly non-linear mapping between structural

parameters and the objective function renders their theory difficult to implement, even

when the appropriate weighting matrix is used.

5 Misspecification and observational equivalence.

The previous section showed that when the investigator knows the model, inference may

be difficult as different parameter values are almost equally probable from the point of

view of the objective function. When the true model is unknown, one can not a priori

exclude that structures with alternative economic features could be equally likely. Since

the literature has built-in frictions in standard DSGE models to enhance its fit without

caring too much about their identifiability, we want to investigate whether models

with different frictions may be indistinguishable when responses to a limited number

of shocks are considered and whether it is possible to obtain significant estimates of

parameters that are in fact absent from the DGP.

To study this issue we consider a model which is much richer than those employed so

far, includes real and nominal frictions, and has been shown to capture reasonably well

important features both of the US economy (see Christiano, et al. (2005), Dedola and

Neri (2004)) and the EU economy (see Smets and Wouters (2003)). The log linearized

model consists of the following 11 equations:
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0 = −kt+1 + (1− δ)kt + δxt

0 = −ut + ψrt

0 =
ηδ

r̄
xt + (1− ηδ

r̄
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(Rt − πt+1)]

0 = Et[
β

1 + β
xt+1 − xt +

1

1 + β
xt−1 +

χ−1

1 + β
qt +

β

1 + β
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0 = Et[
β

1 + βγp
πt+1 − πt +

γp
1 + βγp

πt−1 + Tp(ηrt + (1− η)wt − ezt + ept)]

0 = Et[
β

1 + β
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1

1 + β
wt−1 +

β
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πt+1 −

1 + βγw
1 + β

πt +
γw

1 + βγw
πt−1 − Tw(wt − νNt − ϕ

1− h
(ct − hct−1)− ewt)]

The first equation describes capital accumulation, δ is the depreciation rate, and xt

is current investment; the second equation links capacity utilization ut to the real rate rt

and ψ is a parameter; the third equation is the resource constraint linking consumption

ct and investment expenditures to output, where r̄ is the steady state interest rate

and ezt is a technological disturbance; the fourth equation represents the monetary

policy rule and ert is a monetary policy disturbance; the fifth equation represents the

production function, where η is the capital share; the sixth equation is a labor demand

equation, where Nt is hours worked and wt the real wage rate; the seventh equation

is an Euler equation for consumption, where h captures habit persistence, φ is the

risk aversion coefficient and πt is the current inflation rate; the eight equation is an

Euler equation for investment, where qt is Tobin’s q, β is the discount factor, χ−1 the

elasticity of investment with respect to Tobin’s q and ext an investment shock; the

ninth equation describes the dynamics of Tobin’s q; the last two equations represent

the wage setting and the price setting equations: γp(γw) is a price (wage) indexation

parameter, ζp(ζw) a price (wage) stickiness parameter, ν is the inverse elasticity of

labor supply, ept(ewt) are shocks to the pricing relationships, Tp ≡ (1−βζp)(1−ζp)
(1+βγp)ζp

and

Tw ≡ (1−βζw)(1−ζw)
(1+β)(1+(1+�w)ν�

−1
w )ζw

, where �w is a wage markup. The vector of parameters

includes the structural ones: θ1 = (β, φ, ν, h, δ, η, χ, ψ, γp, γw, ζp, ζw, �w, λr, λπ , λy) and

26



the auxiliary ones θ2 = (ρz, ρx, σz, σr, σp, σw, σx), where ρz, ρx represent the persistence

of the technology and investment shocks and σi, i = 1, . . . 5 the standard deviation of

the disturbances. As usual σi’s are not identified from the normalized responses and

the persistence parameters are identified only when own shocks are considered.

This model is sufficiently rich and complicated that it is difficult to know a-priori

which parameters are identifiable and which are not. To explore this issue we construct

true responses using the posterior mean estimates for the US economy obtained by

Dedola and Neri (see table 2) and examine the shape of the distance function in the

neighborhood of this vector, one parameter at a time. 20 responses of the 11 variables

are used to construct the distance function.

Table 2. Parameter values

θ1 :

β = 0.991 φ = 3.014 ν = 2.145 h = 0.448
δ = 0.0182 η = 0.209 χ = 6.300 ψ = 0.564
γp = 0.862 γw = 0.221 ζp = 0.887 ζw = 0.620
�w = 1.2 λr = 0.779 π̄ = 1.016 λπ = 1.454
λy = 0.234

, θ2 :

ρz = 0.997 σp = 0.221
ρx = 0.522 σw = 0.253
σz = 0.0064 σx = 0.557
σr = 0.0026

Figure 9, which plots the shape of distance function when monetary and technology

shocks are jointly considered, shows that the problems previously noted are present to

a much larger degree here. For example, the objective function is very flat in many

dimensions (the scale of the graphs is 10e-7), somewhat asymmetric and this is true for

a larger range of parameters’ values . Moreover, there is a multidimensional ridge in

the price stickiness (ζp), price indexation (γp), wage stickiness (ζw) and wage indexa-

tion (γw) parameters (see figure 10) - several combinations of these parameters which

produce a value for the objective function which is close to the minimum. For these

dimensions, the use of responses to technology shocks does not help: identification

of these parameters is as problematic considering or disregarding TFP or investment

specific disturbances.
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Figure 9. Objective function: monetary and technology shocks

Armed with this preliminary evidence, we consider a few alternative models where

either stickiness or indexation in wages or prices is eliminated from the true DGP and

estimate the parameters of the fully fledged model. Table 4 reports our estimation

results when population responses are used. For each specification considered there are

four rows: each report estimates obtained starting the minimization routine at different

points7. In cases 1 to 5 and 7 only responses to monetary shocks are used; in case 6

responses to monetary and technology shocks are employed.

7For each parameter θi, we select an economically reasonable interval [a b] and assume a uniform
distribution on it. The starting values are selected as: a+ j ∗ stderr(θj) or b − j ∗ stderr(θj), where
j = 1, 2.
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Figure 10: Distance surfaces and Contour Plots

Several interesting features are present in Table 4. First, in the baseline case, when

all the features are present, price and wage indexation are estimated to be smaller

than the true ones. Second, responses to monetary shocks can not distinguish models

featuring price indexation from models missing this feature (compare cases 1 and 2); it

is possible to confuse a model with no price stickiness and no wage indexation with a

model with these two features but with no price indexation (see case 3); models with

no price indexation and high wage indexation are observationally equivalent to models

where both features are present and roughly of the same size (see case 4).
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Table 4. Estimation results
ζp γp ζw γw Obj.Fun.

Baseline 0.887 0.862 0.62 0.221
x0 = lb + 1std 0.8944 0.8251 0.615 0 1.8235E-07

x0 = lb + 2std 0.8924 0.7768 0.6095 0.1005 3.75E-07

x0 = ub - 1std 0.882 0.7957 0.6062 0.1316 2.43E-07

x0 = ub - 2std 0.9044 0.7701 0.6301 0 8.72E-07

Case 1 0 0.862 0.62 0.221
x0 = lb + 1std 0.1304 0.0038 0.6401 0.245 2.7278E-08

x0 = lb + 2std 0.1015 0.0853 0.6065 0.1791 4.84E-08

x0 = ub - 1std 0.0701 0.1304 0.6128 0.1979 4.72E-08

x0 = ub - 2std 0.0922 0.0749 0.618 0.215 3.05E-08

Case 2 0 0 0.62 0.221
x0 = lb + 1std 0.1396 0.0072 0.6392 0.2436 3.1902E-08

x0 = lb + 2std 0.0838 0.1193 0.6044 0.1683 4.38E-08

x0 = ub - 1std 0.0539 0.1773 0.6006 0.1575 5.51E-08

x0 = ub - 2std 0.0789 0.0971 0.6114 0.1835 2.61E-08

Case 3 0 0.862 0.62 0
x0 = lb + 1std 0.0248 0 0.6273 0.029 7.437E-09

x0 = lb + 2std 0.4649 0 0.7443 0.4668 2.10E-06

x0 = ub - 1std 0.0652 0.0004 0.6147 0.0447 7.13E-08

x0 = ub - 2std 0.6463 0.2673 0.8222 0.3811 5.56E-06

Case 4 0.887 0 0.62 0.8
x0 = lb + 1std 0.9264 0.3701 0.637 0.4919 3.5156E-07

x0 = lb + 2std 0.9076 0.2268 0.6415 0.154 3.51E-07

x0 = ub - 1std 0.9014 0.3945 0.6477 0 6.12E-07

x0 = ub - 2std 0.9263 0.3133 0.6294 0.4252 4.13E-07

Case 5 0.887 0 0 0.221
x0 = lb + 1std 0.9186 0.3536 0.0023 0 4.7877E-07

x0 = lb + 2std 0.8994 0.234 0 0 3.06E-07

x0 = ub - 1std 0.905 0.3494 0.0021 0 4.14E-07

x0 = ub - 2std 0.9343 0.5409 0.0042 0 9.64E-07

Case 6 0.887 0 0 0.221
x0 = lb + 1std 0.877 0.0123 0.0229 0 2.4547E-06

x0 = lb + 2std 0.8919 0.0411 0.0003 0 4.26E-07

x0 = ub - 1std 0.907 0.2056 0.001 0.0001 6.58E-07

x0 = ub - 2std 0.8839 0.0499 0.0189 0 2.46E-06

Case 7 0.887 0 0 0.25
x0 = lb + 1std 0.9056 0.2747 0.0154 0.25 1.60E-06

x0 = lb + 2std 0.9052 0.2805 0 0.25 2.41E-07

x0 = ub - 1std 0.9061 0.3669 0.0003 0.25 4.26E-07

x0 = ub - 2std 0.8985 0.194 0.001 0.25 2.07E-07
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Finally, a model where prices are sticky and wages are partially indexed can not be

distinguished from a model which features substantial price indexation but no wage

stickiness or wage indexation (case 5). Third, in all the cases, the minimized objective

function is within the tolerance limit. Fourth, taking the estimates producing the

infimum of the objective function across minimizations fails to solve the problem since

the ridge in (γp, γw) is extremely flat. This fact can be clearly appreciated in figure

11, where we report responses to monetary shocks obtained in case 5 with true and

estimated parameters: any investigator looking at this graph would have no doubt

that she has nailed down the correct model! Can these problems can be reduced if

responses to a larger number of shocks are considered? Case 6 reports estimates of the

parameters obtained jointly using responses to monetary and technology shocks, and

little improvements obtain. It is only when responses to all shocks are considered that

the range of values consistent with the true DGP shrinks.

Does it matter which parameters values one uses, say, for policy purposes? It clearly

does. For example, using the true parameters of case 5 of and those estimated in the

first row of the block of case 5 in table 3, we find that the implied variability of output

and inflation in the two cases is different. Equally weighting the variability of the two

series and computing the resulting loss, welfare turns out to be about 4 times worse

with estimated parameters than with the true ones (-0.0022 vs. -0.0005).

Could we reduce the observational equivalence problem using external information

to fix some of the parameters? Such a strategy is unlikely to work here, since the ridge

in the objective function is multidimensional. Hence, we need to fix three of the four

troublesome parameters and at the right value. The last row of Table 3 (case 7) reports

estimates obtained for the model of case 5 when γw is fixed to 0.25. Clearly, estimates

of γp are still off the mark.

It is important to stress that the results we present are obtained in the ideal condi-

tions in which the population responses are available. Clearly, observationally equiva-

lent problems could be made considerably worse if the weighting matrix is altered, the

number of responses for each variables or the number of variables consider reduced,

and only sample responses are available. In models like this where partial, weak and

observational equivalence problems are present, one needs to bring a lot of information

external to the dynamics, as for example it is done in Christiano et. al. (2005), to be

able to interpret estimates. It then becomes crucial where this external information

comes from and whether it is credible or not.
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Figure 11: Impulse responses, Case 5

6 Detecting identification problems

Are there ways to detect potential problems and to understand what are the features

of the model economy that could lead to them? The graphical analysis we have used

could be routinely and costlessly implemented and lots of information gathered this

way. However, such an analysis can also be strengthened using formal methods. When

the objective function has derivatives up to second - a standard assumption made in the

literature - under, partial and weak identification all induce Hessians at the optimum

which are rank deficient or fail to have sufficient curvature.

How do one check for the rank of the Hessian? Cragg and Donald (1997) have

provided a procedure to do this. Let h = vec(H) be the vectorized version of H and let

d(L) = (h−p)0(h−p), where p = vec(P ) and P is a matrix of rank L. Under regularity

conditions, when an estimate ĥ is available, Td(L)→ χ2((K −L)(K −L− 1)/2−K),

where K(K + 1)/2 is the number of free elements of H and for L < L0, the true rank,

Td(L) is divergent, while for L ≥ L0, Td(L) ≤ Td(L0).

Alternatively, Anderson (1984, p.475) has shown that estimates of the eigenvalues
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of a matrix when properly scaled have an asymptotic standard normal distribution.

Therefore, the null hypothesis of full rank can be tested against the alternative of

rank deficiency examining whether the smallest of the eigenvalues of the Hessian is

statistically not different from zero. Since the magnitude of the eigenvalues may depend

on the unit of measurements, Anderson also suggests to test the null that the sum of

the smallest k0 eigenvalues to the average of all k eigenvalues is large. This ratio is also

asymptotically normally distributed with zero mean and unit variance when properly

scaled, and it is useful since the alternative accounts for the possibility that none of the

first k0 eigenvalues is zero but that all of them are small (generating weak identification

problems). Since this test requires that the Hessian is consistently estimated under

the null and the alternative - which is impossible to do in our case - one could use the

insights of the test to diagnose anomalies in the size of the eigenvalues.

Finally, one could use the concentration statistics Cθ0(i) =
R
j 6=i

g(θ)−g(θ0)dθ
(θ−θ0)dθ , i =

1, 2 . . ., to detect identification problems. Stock, Wright and Yogo (2002) showed that

this statistics synthetically measures the curvature of the objective function around θ0

and it is related to the non-centrality parameter of the χ2 used in testing the hypothesis

that the objective function at the optimum is zero. Large values of Cθ0(i) imply that
it is easy to reject the null if the objective function is not zero; small values imply that

the displacement of the χ2 from its null value are difficult to detect. While there are no

critical values for this statistics, one could use the values produced by Stock, Wright

and Yogo for linear models to get an idea of potential identification problems.

We apply the last two diagnostics to the Hessian of the objective function of the

model of section 5 at the values estimated in case 5. Both confirm the presence of

significant rank deficiencies. In fact, the maximal concentration statistic (over i) is

0.25 and thirteen of the eighteen roots of the Hessian are small: the sum of the first

12 roots is only 1.0 percent of the average root, the sum of the first 13 roots is 1.8

percent of the average root and the first root is calculated to be smaller than 1.0e−10.

Therefore, at least 12 of the parameters can not be identified from the responses to

monetary shocks. The situation slightly improves when we use both monetary and

technology shocks (case 6), but not by much: the sum of the first 12 roots is 2.1

percent of the average root. It is easy to verify that the parameters associated with

the 12 small eigenvalues are (ρz, β, φ, ν, h, δ, η, γp, γw, �w, λπ , λy). Interestingly, many of

these parameters were also those creating identification problems in the smaller version

of the model considered in section 4. Therefore, adding variables (and responses) does
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not necessarily improves the identifiability of e.g., β, λy, λπ ; it is difficult to distinguish

backward from forward looking dynamics both in prices and wages; and there is very

little information to select production, capacity and depreciation parameters. As in

section 3.3, the fact that the low of motion of the states is roughly insensitive to

variations of these structural parameters in a neighborhood of the estimated values is

responsible for the lack of curvature in the objective function.

7 Conclusions and suggestions for empirical practice

Liu (1960) and Sims (1980) have argued that traditional models of simultaneous equa-

tions were hopelessly under-identified and that identification of an economic structure

was often achieved not because there was sufficient information in the data but be-

cause researchers wanted it to be so - limiting the number of variables in an equation

or eschewing a numbers of equations from the model.

Since then models have dramatically evolved, precise microfundations added, gen-

eral equilibrium features taken into account, and economic measures of fit designed.

Still, it appears that a large class of popular DSGE structures is close to being under-

identified; observational equivalence is widespread; and reasonable estimates are ob-

tained not because the data is informative but because of a priori or auxiliary restric-

tions, which make the likelihood of the data (or a portion of it) informative. In these

situations, structural parameter estimation amounts to sophisticated calibration and

this makes model evaluation and economic inference hard.

A study of identification issues like ours, besides ringing a warning bell about the

potential problems existing in tracing a formal link between DSGE models and the

data, is useful in practice only to the extent it gives applied researchers a strategy

to detect problems and means to either avoid them in estimation and inference or

to develop theoretical specifications which overcome the lack of identifiability of the

structural parameters. Providing such a set of tools is complicated since the relation-

ship between parameters and impulse responses is highly non-linear; the mapping is

unknown and only an approximation is available; problems are multidimensional and

standard diagnostics are unsuitable to understand the sources of identification failure.

This paper provides some hints on how to approach such an issue. We summarize

our suggestions as a list of non-exhaustive steps which we recommend applied investi-

gators to check before attempting structural estimation. First, plotting the objective
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function, a few dimensions at the time, may provide useful indications for the presence

of potential identification problems and point out parameters responsible for them.

Second, examining the rank of the Hessian (or the magnitude of its smaller eigenval-

ues) provides formal evidence for the visual tendencies that plots may deliver. Since

such tests are unlikely to be able to distinguish which particular problem is present,

they should be used as general specification diagnostic for the presence of information

deficiencies. These tests are simple to compute and, in principle, applicable to any

point in the parameter space. Hence, exploration of the properties of the Hessian at

or around e.g., standard calibrated parameters, should logically precede model estima-

tion. Third, simplified versions of the model may give some economic intuition for why

identification problems emerge as could the use of several limited information objective

functions. Working with small versions of large models or with portions of their dy-

namic implications will also help with model respecification. Fourth, mixing calibration

and estimation may lead optimization routines to search for the minimum of the func-

tion in the wrong portion of the parameter space and researchers to draw inappropriate

conclusions about how the economy works. Fifth, the smaller is the number of cross

variables, cross equation and cross horizon restrictions used in estimation, the larger is

the chance that identification problems will be present. This suggests to use as many

implications of the model as possible de facto eliminating the hedge that limited infor-

mation approaches have over likelihood methods, both of classical or Bayesian flavours.

Sixth, while for identification likelihood methods are generally preferable, one should

be aware that even the likelihood function is not the cure for all identification problems

and that Bayesian methods, if improperly used, may cause researchers to oversee them.

Seventh, if identification problems persist even when the full information provided by

the model and whatever additional external information is used, one could attempt

to obtain estimates via S-sets, as suggested by Stock and Wright (2000), rather than

minimize the distance between impulse responses. Alternatively, one should go back

to the drawing board. Often identification problems occur because models are not

explicitly constructed with an eye to estimation. Finally, scientific honesty demands

that the specification of the model is based on prior knowledge of the phenomenon, not

on the desire to identify the characteristics a researcher happens to be interested in.

Nevertheless, resisting the temptation to arbitrarily induce identifiability is the only

way to make DSGE models verifiable and knowledge about them accumulate on solid

ground.
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