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Abstract

We evaluate conditional predictive densities for U.S. output growth and in�ation

using a number of commonly used forecasting models that rely on a large number of

macroeconomic predictors. More speci�cally, we evaluate how well conditional predic-

tive densities based on the commonly used normality assumption �t actual realizations

out-of-sample. Our focus on predictive densities acknowledges the possibility that, al-

though some predictors can improve or deteriorate point forecasts, they might have the

opposite e¤ect on higher moments. We �nd that normality is rejected for most models

in some dimension according to at least one of the tests we use. Interestingly, however,

combinations of predictive densities appear to be correctly approximated by a normal

density: the simple, equal average when predicting output growth and Bayesian model

average when predicting in�ation.
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1 Introduction

Forecasts are traditionally used to evaluate the performance of models. In most cases whether

forecasts are good or not is judged mainly based on the models�(median or mean) point

forecasts. For example, Stock and Watson (2003) have conducted an extensive evaluation

of a large data set of predictors of U.S. output growth and in�ation, focusing on point fore-

casts; Marcellino, Stock and Watson (2003), Banerjee and Marcellino (2006) and Banerjee,

Marcellino and Masten (2005) have conducted similarly broad analyses for the Euro area.

Rossi and Sekhposyan (2010) have further investigated the stability of point forecasts of

output growth and in�ation using the same data set. However, it is becoming more and

more important to assess the correct speci�cation of uncertainty around models�forecasts.

For example, central banks are increasingly concerned about uncertainty around their point

forecasts of in�ation or unemployment targets, and in particular how well models perform

in forecasting a range of future values of important macroeconomic variables.

In this paper we consider models that have been extensively used in the literature for

forecasting output growth and in�ation (and seemingly doing well according to their point

forecasts) and investigate whether their predictive densities are correctly calibrated by the

commonly used normal approximation (see Stock andWatson, 2002). We use the Probability

Integral Transform (PIT) technique originally introduced by Rosenblatt (1952) and more

recently proposed by Diebold, Gunther and Tay (1998) to evaluate the correct speci�cation of

predictive densities. Corradi and Swanson (2006b) provide a comprehensive recent overview

of tests for predictive density evaluation; Granger and Pesaran (2000) and Garratt, Lee,

Pesaran and Shin (2003) further complement the discussion. The di¤erence between this

paper and those in the literature is that we operate in a data-rich environment using the

extensive data set of Stock and Watson (2003), as well as the wide range of evaluation

techniques we use.

The empirical results of this paper are based on several model speci�cations. Regarding

the models, we consider not only predictive densities based on autoregressive distributed

lag (ADL) models with several predictors considered one-at-a-time (as in Stock and Watson,

2003), but also forecast combinations. We include predictive density combinations with equal

weights or with weights equal to the posterior probabilities of the models. In addition, we

consider several estimation techniques: we combine models estimated by OLS as well as via

Bayesian shrinkage methods and a posterior simulator algorithm that samples models from

the model space with highest posterior probability. Finally, we use methods that pool the
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information in various series at the estimation stage as opposed to combining them ex-post,

i.e. factor models as well as Bayesian VARs.

We assess the correct speci�cation of predictive densities using several tests. The tests

we consider include tests of uniformity, serial correlation and identical distribution. Among

the PIT-based tests of uniformity, we consider the histogram-based evaluation technique

employed in Diebold, Gunther and Tay (1998) and Diebold, Tay and Wallis (1999), as well

as Kolmogorov-Smirnov and Anderson-Darling tests. We also consider tests based on the

inverse normal transformation of the PIT, which include the Berkowitz (2001) and Doornik

and Hansen (2008) tests. Regarding tests for independence, we consider the Ljung-Box

test and a version of Berkowitz�s (2001) test for absence of serial correlation (in the PITs).1

Finally, regarding tests of identical distribution, we consider Andrews�(1993) test of stability

applied to the PITs.

Our main empirical �ndings can be summarized as follows. Overall, the performance

of ADL models across the various tests depends crucially on the predictor included in the

model. The most interesting result is that pooled predictive densities based on simple av-

eraging as well as Bayesian Model Averaging (BMA) appear to be fairly well calibrated �

in particular, the simple model average for one-year-ahead output growth forecasts and the

BMA for one-quarter-ahead in�ation forecasts. Most of the other models that pool infor-

mation either at the estimation or at the prediction stage report occasional failings in the

correct speci�cation of predictive densities, according to at least one of the tests we consider.

Interestingly, the fact that a simple average of several parsimonious ADL models and the

BMA have desirable properties in terms of forecasting is a point that has been emphasized

many times in the literature in the context of point forecasts (see e.g. Stock and Watson,

2003, Timmermann, 2006 and Wright, 2009), which we �nd extends to density forecasts

when testing the appropriateness of the normal distribution.

In more detail, based on the Kolmogorov-Smirnov and Anderson-Darling tests we �nd

more pervasive evidence against uniformity for predictive densities of in�ation relative to

output growth, at both short and medium horizons. Similar results hold when assessing the

proper calibration of predictive densities in terms of independence: there is more evidence

of serial correlation in the PITs of in�ation relative to output growth, particularly in the

second moment of the PITs. However, there is more evidence of correlation in the PITs of

1Note that, throughout this paper, we focus on testing serial correlation in the PITs (as opposed to serial
correlation in the forecasts). Serial correlation in the PITs indicates that the pattern of rejection of correct
speci�cation is not random over time, and may signal mis-speci�cation in the dynamics of the underlying
models.
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one-quarter-ahead density forecasts than in one-year-ahead ones. The tests also �nd some

evidence of instabilities in the density forecasts over time, especially at the one-year-ahead

horizon; in general, instabilities are more pronounced for output growth than for in�ation.

Berkowitz�s (2001) test con�rms the results of no serial correlation in the �rst moments

of the PITs, yet rejects uniformity in a wide set of models of output growth and in�ation,

particularly at short horizons. However, the normality of the simple average model for output

growth and the BMA for in�ation is not rejected, with an exception. The exception is that

Doornik and Hansen�s (2008) test rejects the proper calibration of simple average densities

based on non-zero higher (third and fourth) moments of the PITs at the one-quarter-ahead

horizon for output growth; it also rejects for the BMA model at the one-year-ahead horizon

for in�ation.

Overall, under the assumption of normality, predictive densities of simple averaging and

BMA models are among the best calibrated despite the target variable we consider. The

occasional failings are mainly associated with the higher (greater than �rst) moments of

the PITs when we use the simple average model to forecast in�ation at the one-year-ahead

forecast horizon and lack of uniformity of the PITs at the one-quarter ahead forecast horizon.

Similarly, the BMA performs fairly well for output growth as well, though it fails uniformity

for one-quarter-ahead and stability for one-year-ahead forecast horizons.

An analysis similar in spirit to the one considered in this paper is that of Clements

and Smith (2000). There are several di¤erences between our work and theirs, however.

First, they focus only on forecasting output growth and unemployment, and do not consider

in�ation forecasts, which is another important variable whose predictive density we are

interested in. Furthermore, unlike our paper, they do not consider a large data set of

macroeconomic predictors nor a large selection of models, and focus instead on linear and

non-linear univariate models and vector autoregressions with selected predictors. Finally,

their paper (as well as most papers that evaluate density forecasts, starting from Diebold,

Gunther and Tay, 1998) focuses on testing uniformity and uncorrelatedness of the PITs,

whereas we also formally test the hypothesis of identical distribution over time.

Our paper is also related to Clark (2011) who, however, focuses on evaluating density

forecasts from BVARs, whereas we in addition focus on the linear models and a rich data set

of predictors considered by Stock and Watson (2003). Importantly, unlike Clark (2011), our

objective is not to improve forecasting models (which in Clark�s (2011) paper is accomplished

by allowing for stochastic volatility): rather, we consider models that are extensively used in

the literature and test whether their density forecasts based on the commonly used normal
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approximation are correctly speci�ed.

Our paper is also di¤erent from Jore, Mitchell and Vahey (2010) and Manzan and Zerom

(2013). Jore, Mitchell and Vahey (2010) combine density forecasts from VARs in the presence

of instabilities. We also consider density forecast combinations, but in the presence of large

sets of predictors. Finally, note that this paper focuses on testing whether density forecasts

of output growth and in�ation obtained using a normal distribution are correctly speci�ed,

rather than testing which of the competing models�density forecasts are closer to the true but

unknown density in the data. The latter can be analyzed using tests proposed by Amisano

and Giacomini (2007) and Diks, Panchenko and van Dijk (2011). Importantly, note that

we do not undertake an empirical investigation of tests of relative predictive ability in this

paper for two reasons: �rst, our focus is on testing the correct speci�cation of the density

forecasts rather than comparing density forecasts; second, a similar analysis has been recently

undertaken by Manzan and Zerom (2013), who compare predictive densities of in�ation from

competing models using selected data from the Stock and Watson (2003) database.2

The paper is organized as follows. Section 2 describes the econometric methodology and

the tests used in this paper; Section 3 discusses the set of forecasting models, whereas Section

4 describes the data and the empirical results. Section 5 concludes.

2 Econometric Methodology

We are interested in evaluating the h�step-ahead predictive density for the scalar variable
Yt+h. We assume that the researcher has divided the sample of size T + h observations

into an in-sample portion of size R and an out-of-sample portion of size P and obtained

a sequence of h�step-ahead density forecasts, such that R + P � 1 + h = T + h. Let

the sequence of P out-of-sample, estimated conditional predictive densities be denoted bynb�t+h (Yt+hj=t)oT
t=R
, where =t is the information set at time t. We obtain the conditional

predictive densities under the normality assumption by estimating the parameters in the

conditional moments using a rolling window procedure. Thus, b�t+h denotes the probability
density function (PDF) of a normal distribution where the parameters are re-estimated at

each t = R; :::; T over a window of R observations including data indexed t�R+1 to t. The
rolling window estimation procedure is more robust to breaks in the conditional moments of

the predictive densities and has a better chance to result in properly calibrated densities �

2Other related papers include those considering measures of uncertainty such as Guidolin and Timmer-
mann (2006).
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see Clark (2011) and Jore, Mitchell and Vahey (2010).

We test whether the realized values fYt+hgTt=R are generated by
n
�̂t+h (Yt+hj=t)

oT
t=R

using the Probability Integral Transform (PIT) approach suggested by Diebold, Gunther

and Tay (1998). For a given probability density function b�t+h, the PIT is the corresponding
cumulative density function (CDF) evaluated at the realization Yt+h:

zt+h =

Z Yt+h

�1
�̂t+h (uj=t) du � b�t+h (Yt+hj=t) (1)

According to Diebold, Gunther and Tay (1998), if the proposed predictive density is

consistent with the true predictive density then, for h = 1, the density of fzt+hgTt=R is an
independent and identically distributed (iid) Uniform (0,1) and its cumulative distribution

function is the 45� line. When h > 1, then independence is violated by construction, even

if models are correctly speci�ed, since serial correlation of order (h � 1) is built in by con-
struction in the multi-step ahead density forecasts. One recommendation given in Diebold,

Gunther and Tay (1998) and Clements and Smith (2000), among others, is to split the sam-

ple into independent sub-samples where the PITs are at least h-periods apart. In this case

inference on the proper calibration of the predictive densities can be done separately in each

of the sub-samples, or jointly via Bonferroni bounds.

In what follows, we consider several tests, each of which focuses on di¤erent properties

that correctly speci�ed PITs should satisfy. In choosing which test to implement, we follow

Mitchell and Wallis (2011) and focus on the Ljung-Box (LB), Kolmogorov-Smirnov (KS),

Anderson-Darling (AD), Berkowitz (2001) and Doornik and Hansen (2008) tests. The �rst

test aims only at detecting the absence of serial correlation in the PITs; the rest of the tests

aim at detecting violations of uniformity (at times joint with independence); in particular,

the last two tests operate not on the PITs directly, but rather on the inverse normal trans-

formation of the PITs. In addition, we implement Andrews�(1993) QLR test to evaluate

the stability (i.e. identical distribution) of predictive densities which should be satis�ed if

they are properly calibrated.3

It is important to note that these tests have di¤erent properties. For example, both

Mitchell and Wallis (2011) and Noceti, Smith and Hodges (2003) document the power ad-

vantage of the AD test over the KS test in Monte Carlo simulation exercises. Berkowitz

3Note that none of the tests considered here account for parameter uncertainty. As discussed in Berkowitz
(2001) and the references therein, parameter estimation error is empirically of second-order importance in
the presence of model mis-speci�cation. For discussion of tests that take into account parameter estimation
uncertainty, see Corradi and Swanson (2006b).
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(2001), on the other hand, suggests that the tests of proper calibration based on the inverse

normal of the PITs (such as those proposed by Berkowitz, 2001) are more powerful than the

tests of uniformity applied directly to the PITs, at least in �nite samples. In what follows,

we discuss in detail the characteristics of each of the tests we implement.

(a) Tests on the PIT

I. Diebold, Gunther and Tay (1998) test. Diebold, Gunther and Tay (1998) mainly rely

on a graphical assessment of uniformity and independence properties that characterize PITs

of correctly speci�ed predictive distributions. Following Diebold, Gunther and Tay (1998),

we test the uniformity of the empirical distribution function of the PITs (i.e. the histogram

of the PITs); independence is assessed by reporting the autocorrelation function of various

powers of the PITs. More in detail, in order to statistically assess the uniformity of the PITs,

we follow Diebold, Gunther and Tay (1998) in deriving con�dence intervals for the number

of observations falling into any bin; under the maintained assumption of independence, the

latter follows a binomial distribution. We divide the unit interval into nb = 5 equally

sized bins and depict the fraction of PITs falling into each bin. If the PITs are indeed

iid uniform, then each bin would contain p̂ = 100=nb% = 20% of the PITs. We construct

the 2.5th and 97.5th percentiles of the distribution of p̂ by using a normal approximation:

p̂�1:96
p
p̂(1� p̂)=P . The usefulness of this approach is that, when the PITs are not uniform

(i.e. the empirical distribution function of the PIT fails to have a rectangular shape), the

shape of the histogram sheds light on the reasons behind the failure of the model.

II. Tests of uniformity

We test whether the PIT is uniform using the Kolmogorov-Smirnov and Anderson-Darling

tests. The latter measures the di¤erence between the empirical distribution of the PITs,b�t+h (yt+hj=t), and the cumulative distribution of a uniform, r 2 (0; 1) (i.e., the 45� line).
Anderson-Darling test is a special type of Cramér-von Mises test, which puts more weight on

the deviations in the tails of the empirical distribution, as opposed to weighting all its points

equally. We implement these tests following Kroese, Taimre and Botev (2011, Chapter 8).

Let zyj denote the values of zt+h in ascending order. The test statistics are provided below:

i. Kolmogorov-Smirnov (KS, Kolmogorov, 1933, and Smirnov, 1948)

KS =
p
P max
j=1;:::;P

max
n
jzyj � j=P j; jz

y
j � (j � 1)=P j

o
; (2)
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ii. Anderson-Darling (AD, Anderson and Darling, 1952, 1954)

AD = �P � 1

P

PX
j=1

(2j � 1)ln(zyj (1� z
y
P+1�j)) (3)

Both KS, as well as AD tests have non-standard asymptotic distributions. We obtain

their critical values based on the approximations detailed in Kroese, Taimre and Botev (2011,

Chapter 8).4

III. Test for independence (Ljung-Box)

We test for independence in the �rst and second central moments of the PITs via the

Ljung-Box test of serial correlation.5 The test statistic is

Q = P (P + 2)

eLX
l=1

�
�(l)2

P � l

�
; (4)

where � (L) is the serial correlation coe¢ cient at lag l of either the demeaned PITs or

their square. We implement this test with a maximum lag length eL equal to 4, given the
quarterly nature of our data. The p-values are based on an asymptotic �2(l) distribution,

which approximates the distribution well even in moderate sample sizes (cfr. Hayashi, 2000,

p. 144).

IV. Tests of identical distribution

To complement the empirical evidence, we also consider tests for identical distribution. If

zt+h were identically distributed over time, then its (non-central) moments would be constant

over time. We consider empirical evidence on the time variation in the PITs by reporting

Andrews�(1993) QLR test for structural breaks. The test has been typically used in the

forecasting literature to judge whether predictors�Granger-causality is stable over time: see

Stock and Watson (2003). Here, we are concerned about whether the distribution of the

PITs has changed over time, and thus we test whether �1;t and �2;t are constant in each of

4Alternatively, one could simulate their critical values as in Mitchell and Wallis (2011).
5We report the results for the �rst and second (rather than on higher) moments only due to space

constraints.
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the following regressions:6

zt+h = �1;t + "1;t+h (5)

z2t+h = �2;t + "2;t+h: (6)

(b) Tests on the Inverse Normal of the PIT

Berkowitz (2001, Proposition 1) shows that if the PIT is iid U(0,1), then the inverse

standard normal transformation of the PIT is an iid Normal (0,1). Let the inverse standard

normal transformation of the PIT be denoted by ezt+h; where ezt+h � e��1 (zt+h) and e� (:) is
the standard normal CDF. We implement two tests on this transformation.

I. Berkowitz�s (2001) test. Berkowitz (2001) proposes a joint test for zero mean, unit

variance, and independence in ezt+h, against an autoregressive alternative with a mean and a
variance possibly di¤erent from 0 and 1, respectively. That is, we jointly test whether � = 0;

� = 1 and � = 0 in the regression:

ezt+h � � = �(ezt � �) + "t+h; (7)

where "t+h � (0; �2).7 This test is implemented as a likelihood ratio (LR) test, which under
the null hypothesis described above, has an asymptotic �2(3) distribution. One could also

test a subset of the hypotheses in this setting, for example test independence (� = 0),

which has an asymptotic distribution equal to a �2(1) under the null hypothesis. The

di¤erence between this test and the ones under the PIT framework is that Berkowitz (2001)

is a joint test of independence and normality for the inverse normal transformation of the

PIT. According to Berkowitz (2001), the advantage of tests based on the inverse normal

transformation of the PITs is that they are more powerful than tests of uniformity applied

directly to the PITs, at least in small samples; the limitation is that they detect violations

of normality only through the �rst two, and not higher, moments, whereas PIT-based tests

can detect any departure from uniformity.

II. Doornik and Hansen�s (2008) test. Doornik and Hansen (2008) propose to test the

normality of ezt+h using a test on skewness and kurtosis which has good small sample prop-
erties. The test is based on the sum of the squares of transformed measures of skewness

6While, for simplicity, we use Andrews�(1993) test for parameter stability on the PIT, a better approach
would be to use the test for stability of the distribution proposed by Rossi and Sekhposyan (2012), as the
latter is speci�cally designed for densities and could also be used to take into account parameter estimation
error.

7Eq. 7 could be generalized to include higher-order dependence.
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and kurtosis, and has a �2(2) asymptotic distribution under the null of iid normality (i.e.

absence of skewness and kurtosis).

3 Forecasting Models

All the models we consider are estimated using the Stock and Watson (2003) database col-

lected at the quarterly frequency and updated up to January 2011. These variables are asset

prices, measures of real economic activity, wages and prices, and money. We follow Stock and

Watson (2003) and transform the data to eliminate stochastic or deterministic trends, as well

as seasonality. For example, all the variables that represent rates are considered in levels,

while the rest are considered in natural logarithmic di¤erences. For a detailed description

of the variables we consider and their respective transformations, see Table 1. The variables

are in percentage points, and the growth rates have been annualized. The earliest starting

point of the sample that we consider is January 1959, although several series have a later

starting date due to data availability constraints. We use a �xed rolling window estimation

scheme with a window size of 40 observations. For simplicity, when describing the models

below, we omit the time-subscript that would be appropriate given the time-varying nature

of the parameters introduced by the rolling window estimation.

INSERT TABLE 1 HERE

We consider an ADL model, where individual predictors are used one-at-a-time, as well

as models that pool information across series, such as BMAs, BVARs and factor models. In

what follows, we describe these models and their implied PITs.

3.1 Autoregressive Distributed Lag (ADL) Models

We consider forecasting quarterly output growth and in�ation h-periods into the future using

lags of one predictor at a time in addition to the lagged dependent variable. The forecasting

model is:

Y ht+h = �k;0 + �k;1 (L)Xt;k + �k;2 (L)Yt + ut+h; t = 1; :::; T (8)

where the dependent variable is either Y ht+h = (400=h) ln(RGDPt+h=RGDPt) or Y ht+h =

400=h ln(PGDPt+h=PGDPt) � 400 ln(PGDPt=PGDPt�1), where RGDPt+h and PGDPt+h
are the real GDP and GDP de�ator, respectively. Xt is the 1 � K vector of explana-

tory variables in Stock and Watson�s (2003) database, and Xt;k denotes the k-th variable,
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for k = 1; :::; K. Note that the total number of individual economic variables considered

in our application is K = 32.8 Yt is either the period t output growth, that is Yt =

400 ln(RGDPt=RGDPt�1), or the period t change in in�ation, that is Yt = 400 ln(PGDPt=PGDPt�1)�
400 ln(PGDPt�1=PGDPt�2).9 Further, the error term ut+h is assumed to be distributed

normally, N(0; �2). We consider h = 1; 4 corresponding to one-quarter ahead and one-

year ahead forecast horizons. �1 (L) =
Pp

j=0 �1jL
j and �2 (L) =

Pq
j=0 �2jL

j, where L

is the lag operator. We estimate the number of lags (p and q) recursively by BIC, �rst

selecting the lag length for the autoregressive component, then augmenting with an opti-

mal lag length for the additional predictor. The PITs at a given time period t + h are:

�t+h(Y
h
t+hj(�̂0 + �̂1 (L)Xt;k + �̂2 (L)Yt); �̂

2), where :̂ indicates OLS estimates of the model�s

parameters, while �t+h is the conditional CDF of the proposed normal distribution. To

estimate �̂2, we use HAC-robust variance estimates (Newey and West, 1987).10

As a particular case, we consider the autoregressive model, where we use only the lagged

dependent variable to forecast output growth and in�ation. The PIT for the autoregressive

model is �t+h(Y ht+hj(�̂0+ �̂2(L)Yt); �̂2), where the predictive distribution is again assumed to
be normal and the conditional moments are obtained similarly to those of the ADL models.

3.2 Pooled Models

We consider several models.

(i) Simple Average Model. The �rst pooling strategy we consider is the simple model

average which has been shown to perform well for point forecasts by Stock andWatson (2003,

2004).11 We follow Mitchell and Wallis (2011), and consider the predictive distribution of

the combined model. More in detail, we estimate the ADL models in eq. (8) for all the

regressors (one-at-a-time), i.e. for k = 1; :::; K, and consider linear combinations of their

PITs, where each PIT is weighted with an equal weight (1=K). The PIT associated with

the equal-weight pooled predictive density is de�ned as (see Jore, Mitchell and Vahey, 2010,

eq. 1):

�ct+h =
1

K

KX
k=1

�t+h(Yt+hj�̂k;0 + �̂k;1(L)Xt;k + �̂k;2(L)Yt; �̂k
2); (9)

where the k subscripts in the conditional moments indicate that parameters correspond to

8The datasets for output growth include historical data for in�ation, but not output growth (and vice
versa), as the lagged dependent variable is automatically included in eq. (8).

9Note that, like Stock and Watson�s (2003) approach, this relies on the assumption that in�ation is I(2).
10The truncation parameter used in the HAC estimate is R1=4.
11See Timmermann (2006) for a review of forecast combination.
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the k-th ADL regression.12

(ii) Bayesian Model Averaging (BMA). The second averaging method we consider is

the Bayesian Model Average, which also pools from the set of simple models, yet assigns

weights that are proportional to the models�posterior probabilities. BMA puts more weight

on more likely models as opposed to putting equal weight on all the models. We consider

two variants of BMA models following Wright (2009). Note, however, that Wright (2009)

is concerned with model averaging in point forecasts whereas we are interested in BMA for

density forecasts.

- BMA-OLS. The �rst version is very similar to the simple model average (eq. 9) as it uses

the OLS estimates of the respective model�s parameters. It is di¤erent however from the sim-

ple model average since it has time-varying weights Pt(MkjDt); which represent the posterior

probability of model k denoted byMk, given the dataDt = fYt; Xt; Yt�1; Xt�1; :::; Yt�R; Xt�Rg.
The PIT in this case is:

�BMA�OLS
t+h =

KX
k=1

Pt(MkjDt)�t+h(Yt+hj(�̂k;0 + �̂k;1(L)Xt;k + �̂k;2(L)Yt); (�̂k)
2) (10)

-BMA. The second version of BMA we consider is the full Bayesian version, where the

estimated parameters are not the OLS counterparts (in the Bayesian framework this would

be equivalent to obtaining coe¢ cients under a �at prior), but rather they are posterior

estimates and, thus, are in�uenced by the choice of the prior distribution. Let ~: indicate

estimates associated with the fully Bayesian estimation. In this case the PIT is the weighted

average of the cumulative predictive densities, denoted by ~�t+h; using weights that are the

posterior probabilities of their respective models:

�BMA
t+h =

KX
k=1

Pt(MkjDt)~�t+h(Yt+hjDt;Mk); (11)

where Mk denotes the k-th model and Pt(MkjDt) is the posterior probability of the k-th

model given the data Dt.

We follow Wright (2009) and apply a g-prior for ~�k = [~�k;0 ~�k;11 ::: ~�k;1p ~�k;21 ::: ~�k;2q]0.

More speci�cally, let ~Xk denote the T � (q + p+ 1) matrix of explanatory variables and Y h

as the T � 1 dependent variable, then

~�kj~hk v N( ��k; ~h�1k [g ~X 0
k
~Xk]

�1); (12)

12Note that we do not consider the simple AR model in the model combinations.
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where ~hk = ~�k�2 is the precision parameter. We follow Koop (2003, Chapter 3) and assume

a Gamma prior distribution for the precision parameter

~hk v G(�s�2k ; ��): (13)

We set �� = 0 which creates an uninformative prior for the precision (i.e. the variance of

the regression equation). This is appropriate since the precision parameter is common to all

models. As in Wright (2009), we assume g = 1, which puts equal weight on the prior and

the data in the posterior density of regression coe¢ cients. To further parameterize the prior,

we need values for ��k = [��k;0 ��k;10 ::: ��k;1p ��k;20 ::: ��k;2q]0 and �s2k. ��
k
0 and ��

k
10 are set to their

pre-estimation sample values obtained from autoregressive (of order 1) models of in�ation

and output growth estimated over 1947:Q1-1958:Q4, while the remaining coe¢ cients are

centered around zero.13

We obtain the posterior distributions by adapting Koop (2003, Chapter 3 and Chapter

11) to our prior distributions:

~�k; ~hkjDt � NG(�; V ; s�2; �); (14)

where NG(.) denotes the Normal-Gamma distribution. Let �̂ denote the OLS estimate of

the regression coe¢ cients and P ~Xk
= IT � ~Xk( ~X

0
k
~Xk)

�1 ~X 0
k; then

V = [(1 + g) ~X 0
k
~Xk]

�1 (15)

� =
�̂k
1 + g

+
��kg

1 + g
(16)

� = T (17)

s2 = ��1
�
1

1 + g
Y h0P ~Xk

Y h +
g

1 + g
(Y h � ~Xk

��k)
0(Y h � ~Xk

��k)

�
(18)

Furthermore, in this context both the predictive density as well as the posterior model density

have analytical solutions. The predictive density is given by

Y ht+hjDt;Mk � t( ~Xt�; s
2[IT + ~XtV ~X

0
t]; �); (19)

13It turns out that by setting �� = 0, we yield the speci�c value of �s�2k ; which is irrelevant for further
calculations. The mean of the gamma distribution is de�ned by �s�2k ��, while the variance is �s�2k ��2, which
both become zero when �� = 0. This would be equivalent of having no prior (or having an uninformative
prior) for the precision despite the speci�c value of �s�2k .
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For the degrees of freedom implied by our rolling sample size of 40, the t-distribution is

similar to a normal distribution. On the other hand, under the assumption that all the

models are a priori equally likely, the model�s posterior distribution becomes

p(MkjDt) =
p(Y hjMk)PK
j=1p(Y

hjMj)
(20)

and the marginal likelihood p(Y hjMk) is described as being proportional to

p(Y hjMk) /
�

g

1 + g

� (1+p+q)
2

[�s2]�
T�1
2 : (21)

Note that when g = 0, both the BMA-OLS and the BMA models reduce to the simple

model average, as g = 0 is equivalent to estimating parameters under a �at prior and

assigning each individual model a weight equal to 1=K. In addition, the lag selection is

important. When considering the ADL models or the simple model average, p and q (the lag

length) are selected recursively via BIC. We keep p and q �xed at their recursively selected

levels for both the BMA-OLS as well as the BMA speci�cations. Furthermore, as noted in

Wright (2009), the analytical results presented in this section work under the assumption of

strict exogeneity of the regressors and do not allow for serial correlation in the error terms,

which is very important given our multi-step forecasts. One could allow for serial correlation,

but this would come at a cost of not being able to derive analytical solutions for the predictive

densities and models�posterior probabilities. The latter would require a simulation, which

could be numerically intensive. Since the point forecasting literature has shown that models

could have good forecasting properties even if their theoretical assumptions are not fully

satis�ed, we proceed under the assumption that the BMA could still perform well in terms

of predictive densities.

-BMA-MC3. The last model averaging technique we consider is the Markov Chain Monte

Carlo Model Composition (MC3). The theoretical framework of the BMA-MC3 is very

similar to that of the BMA, except that the former is a posterior simulation algorithm which

allows to consider a multiplicity of models at a lower computational cost: in fact, it allows all

regressors to enter the right hand side of the regression model (and not just the autoregressive

lags and lags of only one additional economic variable). That is, MC3 is an algorithm that

could help the researcher sample from the model space by concentrating on the regions where

the models�posterior probabilities are high �see Koop (2003, Chapter 11) for the algorithm,

which we extend to pooling models�predictive densities. More speci�cally, the algorithm is:
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� Start with a model M0. In our case, we start with the autoregressive model with the

lag length of q and one additional explanatory variable.14

� At step s, s = f1; 2; :::; Sg ; consider a new candidate model M�, which is drawn

randomly with equal probability from set of models that include: (i) the current model

M s�1; (ii) all models that add one additional explanatory variable to the current

model M s�1; (iii) all models that delete one explanatory variable from the current

model M s�1.

� We accept the candidate model with probability:

�(M s�1;M�) = min

�
p(Y jM�)

p(Y jM s�1)
; 1

�
(22)

� We save Pt(MkjDt) and ~�t+h(Yt+hjDt;Mk) for accepted models.

Let S = 10; 000 be the total number of draws, while �S = 1; 000 denotes the number of

burn-in draws.15 The pooled predictive density is:

�MC3
t+h =

SX
s=�S+1

Pt(MsjDt)~�t+h(Yt+hjDt;Ms): (23)

3.3 Models with Principal Components

Next, we consider a variant of the ADL model, eq. (8), where instead of considering each

individual regressor one-by-one, we consider one model augmented with factors extracted

from the set of all regressors. More in detail, we estimate a static factor model:16

Y ht+h = �0 + 
F̂t + �2 (L)Yt + u
h
t+h; t = 1; :::; T; (24)

where F̂t is the (1�m) vector of estimated �rstm principal components of theK variables we

consider in this paper. We recursively select the number of factorsm over each rolling window

R such that the total number of factors explain at least 60% of the variation contained in

14Given our large database we do not consider the lags of economic variables, since that would make the
model space, which is already large, even larger, and less feasible to simulate.
15Draws discarded to minimize the e¤ect of the starting point in the simulation.
16The static factor model could, in principle, be extended to a dynamic factor model, although, as Bai

and Ng (2007) note, there is little gain to be expected from moving from static to dynamic factor models
from a forecasting standpoint.
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the K macroeconomic data series. This results in 2-3 factors for output growth and in�ation

at di¤erent estimation periods.17 The remaining de�nitions from the ADL models carry

forward to this case: the PIT is �t+h(Y ht+hj(�̂0 + 
F̂t + �̂2 (L)Yt); �̂2), where :̂ indicates OLS
estimates of the model parameters, while �t+h is the conditional CDF of the proposed normal

distribution, and �2 is estimated by HAC.

3.4 Bayesian Vector Autoregressions

Finally, we consider a large scale Bayesian vector autoregression (BVAR) to model the joint

dynamics of all the variables simultaneously. Our BVAR(l) speci�cation is:

Yht+h = C +B(L)Yt + Ut+h; (25)

where Yht+h = [Y h1;t+h ; Y
h
2;t+h ; X

h
1;t+h ; ::: X

h
k;t+h; :::X

h
K;t+h]

0, Y h1; t+h and Y h2; t+h are the h-

step-ahead variables for output growth and in�ation de�ned as in eq. (8) and Xh
k;t+h =

(400=h) ln (Xt+h=Xt), Yt = [Y1;t; Y2;t; X1;t; ::: Xk;t; ::: XK;t]0, Y1; t and Y2; t are the output
growth and in�ation in period t; Ut+h is a (K + 2) � 1 error term, Ut+h � N(0;�u) and

B(L) =
Pl

j=0BlL
j, where L is the lag operator and l is selected recursively by BIC. We as-

sume that�u is proxied by the sample variances of the respective series�u = diag(�̂21; :::; �̂
2
K+2)

over the respective rolling estimation windows.

Let B = [C B1 ::: Bl]0 and � = vec(B). We impose a conditional prior on �

�j�u � N(vec( �B);�u 
 �
�2):

We parameterize the prior such that it centers the regression coe¢ cients around zero

( �� = 0) re�ecting our prior belief on the mean reverting nature of the variables in the VAR

(all series except the rates are in �rst di¤erences.) Further, �
 is parameterized such that the

coe¢ cients on the lagged variables are independent of each other and the covariance matrix

for each lagged coe¢ cient is parameterized as:

V ar((Bl)ij) =

8<:
�2

l2
; j = i

�2

l2
�̂2i
�̂2j
; otherwise

(26)

17Note that the datasets for output growth includes historical data for in�ation, but not output growth
and vice versa. We also considered the ICp1 criterion of Bai and Ng (2002), but for our data set it chooses
a very large number of factors: it chooses 10 when the maximum number of factors is allowed to be 10, for
example.
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where the �̂i is re-estimated over each rolling window.

The prior variance on the constant is simply �2. Given the quarterly nature of the data

we set � = 0:2 as recommended in Sims and Zha (1998). Given the results in Giannone,

Lenza and Primiceri (2012), under the assumption that the variance matrix of the residuals

�u is known, the conditional predictive density for an individual variable such as output

growth and in�ation (separately) can be written as:

�BV ARt+h = �t+h(Yhi;t+hjY 0tB̂i;Y 0tV̂iYt + �̂i); i = 1; :::; K + 2 (27)

where �t+h(:) is the CDF of the normal distribution, Y = [1k Yl+1 ::: YT ], Yhi = [Yhi;l+1 ::: Yhi;T ]
and

B̂i = (YY 0 + (�
�2)�1)�1(YYhi
0
+ (�
�2)�1 �Bi) (28)

V̂i = �i 
 (YY 0 + (�
�2)�1)�1: (29)

Note that the estimator of the variance (V̂i) is not HAC; rather, it relies on iid assumptions

to obtain a simple analytical (normal) solution for the predictive density.

4 Empirical Evidence

This section discusses the empirical evidence. We start by considering tests of uniformity

for both medium and short horizon forecasts, one-year- and one-quarter-ahead, respectively.

The PIT-based tests of uniformity include: Diebold, Gunther and Tay (1998), Kolmogorov-

Smirnov, and Anderson-Darling. Then we discuss tests of independence; �nally, we provide

tests for identical distribution (instabilities). We conclude by considering tests for the correct

speci�cation based on the inverse normal transform of the PITs.

To preview our results, we �nd that there is more evidence against lack of uniformity for

density forecasts of in�ation than for output growth, at both short and medium horizons. Our

main result is that the best calibrated predictive densities (in terms of correct calibration by

a normal density) are density combinations, in particular the simple averaging for one-year-

ahead output growth forecasts, and Bayesian model averaging for one-quarter-ahead in�ation

forecasts. The autoregressive model, the factor model and a variant of Bayesian model

average constructed with OLS estimates perform fairly well in terms of correct speci�cation

for output growth at the one-quarter-ahead horizon as well, though the correct speci�cation

of normal density forecasts fails for all other models according to at least one of the tests we
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consider.

Regarding correlation, in general, forecast densities are fairly well calibrated for GDP

growth, with occasional exceptions, but less so for in�ation; in addition, there is more

evidence of correlation in the PITs of one-quarter-ahead forecasts than in one-year-ahead

ones. Several versions of model averaging, as well as the factor model, perform fairly well,

though the factor model and the simple average show evidence of serial correlation in the

second moments of the PITs in the case of in�ation.

The tests also �nd some evidence of instabilities in the density forecasts over time, espe-

cially for one-year-ahead forecasts, and more so for output growth than in�ation.

Overall, across the various tests we consider, the performance of the ADL model depends

crucially on the predictor, the forecast horizon and the target variable.18

4.1 Test of Uniformity

Figures 1 to 2 report results based on the Diebold, Gunther and Tay (1998) test for one-

quarter-ahead density forecasts. Figure 1 focuses on forecasts of output growth whereas

Figure 2 focuses on in�ation. In each �gure, the pictures in Panel (A) report the empirical

distribution of the PIT for ADL models, eq. (8), with selected regressors (such as the

lagged dependent variable, or autoregressive (AR) model, reported on the top, left side; the

spread; unemployment; and money (M1)); Panel (B) instead reports results on the PITs

for models combining large data sets: the equal combinations of density forecasts across

the ADL models, eq. (9), labeled �Simple Average�; the BMA model with OLS weights,

eq. (10), labeled �BMA-OLS�; the BMA model with posterior weights, eq. (11), labeled

�BMA�; the BMA model with MC3, eq. (23), labeled �BMA-MC3�; the factor model, eq.

(24), labeled �Factor�; and the BVAR model, eq. (27), labeled �BVAR�. In addition to the

empirical distribution function of the PIT, the pictures report 95% con�dence bands for the

null hypothesis of iid uniformity.

Figure 1(A,B) shows that, when forecasting output growth, Diebold, Gunther and Tay�s

(1998) test rejects the hypothesis of normality (under the maintained assumption of inde-

pendence) for the ADL model with the unemployment rate, the BMA model, as well as

18For instance, models based on nominal interest rates appear to result in correctly calibrated densities
for output growth, but not for in�ation, except for the Berkowitz (2001) test at short horizons. The simple
autoregressive model appears to be well calibrated benchmark at the one-year-ahead forecast horizon for
output growth, while it fails according to the Berkowitz�s (2001) test for both short-term forecasts of output
growth and in�ation, as well as in the dimension of second and higher moments of the PITs for the one-
year-ahead in�ation.
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BMA-MC3 and the BVAR. The histograms of the PITs of the BMA-MC3 and the BVAR

suggest that too many realizations fall in the middle of the distribution relative to what

would have been expected if the PITs were iid uniform.

Figure 2(A,B) instead shows results for density forecasts of in�ation at the one-quarter-

ahead horizon. In this case the test does not reject uniformity for the ADL models we display

(see Panel (A)). Density combinations (reported in Panel (B)) appear to be well calibrated,

with the exception of the BMA-MC3 and the BVAR models: they again overestimate the

realizations in the middle, but less severely than in the case of output growth.

INSERT FIGURES 1 AND 2 HERE

For the same models, Tables 2 and 3 provide results for the Kolmogorov-Smirnov (labeled

�KS�) and the Anderson-Darling (labeled �AD�) tests of uniformity of the PITs, which test

the correct speci�cation of the predictive densities, again under the assumption of indepen-

dence. Table 2 reports results for short-horizon predictive densities. The left panel in Table

2 shows that, when predicting GDP growth, the KS test mostly favors correct speci�cation

across the models, while the AD test �nds strong evidence of mis-speci�cation for most of

the predictors, with the exception of various nominal interest rates, industrial production,

employment and some measures of money. In addition, the tests (in particular the AD test)

detect mis-speci�cation in all the BMA model speci�cations as well as the BVAR.19 The

simple average and the factor models are, however, correctly speci�ed. Note that, relative

to the results reported in Figure 1, the AD test is slightly more powerful in detecting mis-

speci�cation in several models (e.g. the BMA-OLS and BMA). The right panel in Table

2 shows that, when predicting in�ation, most of the predictors and models result in mis-

speci�ed densities according to the AD test (although not according to the KS test); only the

simple average and the BMA models are correctly speci�ed according to both the KS and

AD tests, while the densities of the factor and BMA-OLS models are mis-speci�ed according

to the AD test. Note that oftentimes the KS and AD tests reach opposite conclusions: the

discrepancies between the tests are most likely due to the higher power of the AD test relative

to the KS test, especially in the tails of the distributions, which we alluded to in Section 2.

In the case of in�ation, the AD test �nds more empirical evidence of mis-speci�cation than

in the case for output growth. In addition, it also �nds more evidence of mis-speci�cation

than Diebold, Gunther and Tay�s (1998) test, especially for several ADL models. Overall,

equally pooled models result in correctly speci�ed densities according to all tests.

19The KS test only detects mis-speci�cation in the BMA-MC3 and the BVAR.
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Table 3 shows results for medium horizon (one-year-ahead) predictive densities. Due to

the maintained assumption of independence and the serial correlation built, by construction,

in the four-quarter-ahead forecasts, we divide the out-of-sample period into four subsets

whose observations are 4 periods apart. For brevity, we report the minimum p-value across

the various subsets. The left panel shows that only ADL models using exchange rates as

predictors result in mis-speci�ed densities and only according to the AD test. Furthermore,

both the KS and AD tests �nd empirical evidence against the correct speci�cation of the

BMA-MC3 and BVAR models. The right panel shows that there is more evidence of mis-

speci�cation for the ADL models when forecasting in�ation rather than output growth at

medium horizons: several nominal interest rate measures do not result in correctly speci�ed

densities. The tests reject the correct speci�cation of several forecast combination mod-

els (including BMS-OLS, BMA-MC3 and the BVAR models), while do not reject correct

speci�cation for the simple average and BMA models.

INSERT TABLES 2 AND 3 HERE

Overall, by comparing the right and left panels in the tables, under the maintained as-

sumption of independence, there is more empirical evidence against correct speci�cation for

density forecasts of in�ation than for output growth, at both short and medium horizons.

By comparing ADL models across Tables 2 and 3, we conclude that normality is more appro-

priate for forecasting one-year-ahead than one-quarter-ahead output growth and in�ation.

Regarding model combinations, the most robust result is that normality cannot be rejected

for the simple average and BMA models across horizons (with the exception of BMA for

forecasting output growth at short horizons). The factor model also performs well in all

cases but forecasting in�ation at the one-quarter-ahead horizon.

4.2 Tests of Independence

Correct speci�cation of density forecasts also requires independence of the PITs. Tables 4 and

5 report results for the Ljung-Box (LB) test of no-autocorrelation in the PITs. Table 4 focuses

on forecast horizons equal to one quarter (h = 1). The left panel in Table 4 reports results

for forecasting output growth and the right panel reports results for forecasting in�ation.

For each of the models, reported in the �rst column of each panel, the tables report the

p-values of the LB test for serial correlation in the mean (next column) and in the variance

of fzt+hgTt=R (second to next column).
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For output growth, Table 4 shows very little statistical evidence of serial correlation in

the �rst moments of the PITs (except for the BMA-MC3 model and for the ADL models

with the T-bill rate). There is signi�cant serial correlation in the second moments of the

PITs for the ADL model for several predictors (especially medium and long interest rates

and some measures of money), as well as for the BMA-MC3 and BVAR models. The equal

average, BMA-OLS, BMA and factor models show no serial correlation in either the �rst or

the second moments of their PITs.

Turning to in�ation, reported on the right panel of Table 4, the striking result is that

serial correlation in the second moments of the PITs is rejected for most of the ADL models

(with the exception of real overnight interest rates, earnings and real M3 measures), as well

as for most density combinations (with the exception of BMA-OLS and BMA). Instead,

there is no evidence of serial correlation in the �rst moments of the PITs for most ADL

models, nor for the simple average and the factor models; however, there is serial correlation

in the PITs of BMA-MC3 and BVAR models.

INSERT TABLES 4 AND 5 HERE

Table 5 reports results for one-year-ahead density forecasts (h = 4). Due to the serial

correlation built by construction in the four-step-ahead forecasts, we divide the out-of-sample

period into four subsets whose observations are 4 periods apart. For brevity, we report the

minimum p-value across the various subsets. Table 5 shows very little evidence of serial

correlation in the PITs for output growth across various speci�cation, and reports a few

rejections of no serial correlation in the PITs of in�ation. For output growth, almost all

of the ADL, simple average, BMA-OLS, BMA models, factor, as well as BVAR models are

correctly speci�ed; however, the test rejects independence in the PITs of the BMA-MC3

model. There is slightly stronger evidence of serial correlation in PITs of in�ation forecasts,

(especially in the second moments of the PITs) for the ADL models with employment,

unemployment, as well as several money and interest rate measures. The simple average,

BMA-MC3, factor and BVAR models also result in mis-calibrated densities. Instead, the

BMA and BMA-OLS models do not show evidence of serial correlation in the PITs.

In general, forecast densities are fairly well calibrated in terms of uncorrelation in the

PITs for GDP growth, with occasional exceptions for the ADL model with selected pre-

dictors, but less so for in�ation. In addition, there is more evidence of correlation in the

PITs for one-quarter-ahead forecast densities than in one-year-ahead ones, as well second

moments versus the �rst. The most robust result in favor of correct speci�cation across
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horizons and predictors refers, again, to equal averaging and BMA models, although simple

averaging shows evidence of serial correlation in the second moments of the PITs in the case

of in�ation.20

4.3 Tests of Identical Distribution

There is empirical evidence in the forecasting literature that predictors�Granger-causality is

unstable over time: see Stock and Watson (1996, 2003, 2007) and Rossi (2013). Here, we are

concerned that the distribution of the PITs might have changed over time. We investigate

the stability of the �rst and second (non-central) moments of the PITs using Andrews�

(1993) test. Tables 6 and 7 provide the results for one- and four-quarter-ahead forecast

horizons, respectively, where, again, for the case of h = 4, we report the minimum p-value

across the various independent subsets h�1 periods apart. Table 6 shows that we reject the
stability of the PITs of output growth for a few nominal interest rate predictors in the ADL

model, as well as in the BMA-MC3 model. There is less evidence of instabilities in density

forecasts of in�ation. As Table 7 suggests, there is stronger evidence of instabilities in the

four-quarter-ahead predictive densities of both output growth and in�ation: the test detects

instabilities for the ADL model when several predictors are used (e.g. interest rates and

real money when predicting output growth and exchange rates, capacity utilization and M1

when predicting in�ation). The instabilities mostly a¤ect the second (non-central) moments

of the PITs. In addition, there is evidence of instability in the predictive density of BMA,

BMA-MC3, as well as BVAR models when predicting output growth. On the other hand,

there is no evidence of instability in predictive densities of simple average, BMA-OLS and

factor models. For the case of in�ation, models based on pooling result in stable densities

as well, with the exception of BMA-OLS and BMA-MC3 models. The break dates reported

for h = 1 correspond to the Great Moderation. Given that the sub-sample based analysis

relies on Bonferroni bounds, we do not report break dates for h = 4.

INSERT TABLES 6 AND 7 HERE
20As an alternative, one could implement the BDS test by Broock, Scheinkman and Dechert (1987). The

BDS test is a non-parametric test of the null hypothesis of independent and identical distribution against
an unspeci�ed alternative and operates by reshu­ ing the observations.
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4.4 Tests on the Inverse Normal of the PIT

Finally, we report results for tests based on the inverse normal of the PIT. Recall that,

according to Berkowitz (2001), the latter not only can test jointly for uniformity and serial

correlation, but are also more powerful than the previous ones we reported. Tables 8 and 9

report results for Berkowitz�s (2001) tests whereas Table 10 reports results for the Doornik

and Hansen (2008) test.

Interestingly, at all horizons, Tables 8 and 9 show that there is strong evidence of mis-

speci�cation in the PITs for both output growth and in�ation according to Berkowitz�s

(2001) test for uniformity (labeled �� = 0; � = 1�). Basically, the only models that are

not mis-speci�ed for forecasting output growth at short horizons are the ADL model with

exchange rate measures as well as the simple average, and none of the models for predicting

in�ation at short horizons, except BMA. On the other hand, at the one-year-ahead horizon,

the ADL models are all correctly speci�ed for output growth, as well as the BMA, BMA-

OLS, factor and simple average models. When predicting in�ation one-year-ahead, only

ADL models based on nominal interest rates, as well as the BMA-OLS, BMA-MC3, and

BVAR models are not correctly speci�ed.

INSERT TABLES 8 AND 9 HERE

We should note that Tables 8 and 9 also provide evidence on lack of serial correlation

in the PITs (columns 3 and 7, labeled �� = 0�), as well as against the joint hypothesis

of independence and normality of inverse normal transform of the PITs (columns 4 and 8,

labeled �joint�). The results of no serial correlation are in-line with the ones implied by

the Ljung-Box test reported in Tables 4 and 5. Serial correlation in the �rst moment of

the PITs is almost inexistent for both short and medium horizon predictive densities for

both output growth and in�ation. The joint hypothesis is rejected for several models for

both in�ation and output growth, primarily at the one-quarter-ahead forecast horizon. By

comparing columns two and four (and six with eight), it appears that the joint hypothesis

results mostly imitate those of the test of uniformity.

Finally, Doornik and Hansen�s (2008) test, which relies on transformed skewness and

kurtosis measures, does not detect strong mis-speci�cation in the predictive densities of

several ADL, BMA-OLS and factor models. However, based on this test, the simple average,

BMA, BMA-MC3 as well as BVAR models appear to be mis-speci�ed. Notably, the evidence

of improper calibration is stronger for one-step-ahead density forecasts relative to the one-

year-ahead ones.
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INSERT TABLE 10 HERE

4.5 A Summary of the Empirical Results

Table 11 provides a summary of the empirical results across models and test statistics. For

each model and for each test, it summarizes the empirical evidence on the property listed in

the corresponding column. For example, for the tests for uniformity listed in columns 2-5,

"yes" denotes that uniformity is not rejected at the 5% signi�cance level. The table shows

that, for many models, the assumption of normality of density forecasts is mis-speci�ed,

according to at least one of the tests we consider. The evidence in favor of correct speci�cation

of normality is the strongest for equally-weighted forecast averages, especially for predicting

output growth at ones-year-ahead horizon, in which case none of the tests rejects correct

speci�cation. The same holds for BMA for one-quarter-ahead in�ation density forecasts.

Overall, the performance of both models is more robust across target variables and horizons

than that of all the other models we consider. Thus, while each of the ADL models is mis-

speci�ed for some predictors and according to some tests, their average is not. This suggests

that non-normality is important, except possibly for equal average and BMA density forecasts

combination models.

INSERT TABLE 11 HERE

5 Conclusions

This paper evaluates the correct speci�cation of predictive densities of U.S. in�ation and

output growth, based on an extensive data set of macroeconomic predictors. Our empirical

�ndings show that, according to most tests, predictive densities of predictive density com-

binations based on simple, equal weighting, as well as Bayesian Model Averaging appear to

be one of the best calibrated models in terms of normality. We conjecture that averaging

across series and models might be the reason for this result. Whether or not normality is an

appropriate assumption for each individual ADL model crucially depends on the predictor,

although most predictors typically fail according to at least one of the tests. The results for

the factor and BVAR model-based, as well as the alternative ways of combining densities

considered in this paper are much less robust: the normality assumption is rejected according

to several tests, at least at some forecast horizons.
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6 Figures and Tables

Table 1. Description of Data Series

Label Trans Period Name Description Source

Asset Prices

rovnght@us level 59:M1-10:M9 FEDFUNDS Int. Rate: Fed Funds (E¤ective) F

rtbill@us level 59:M1-10:M9 TB3MS Int. Rate: 3-Mn Tr. Bill, Sec Mkt Rate F

rbnds@us level 59:M1-10:M9 GS1 Int. Rate: US Tr. Const Mat., 1-Yr F

rbndm@us level 59:M1-10:M9 GS5 Int. Rate: US Tr. Const Mat., 5-Yr F

rbndl@us level 59:M1-10:M9 GS10 Int. Rate: US Tr. Const Mat., 10-Yr F

stockp@us �ln 59:Q1-10:Q3 SP500 US Share Prices: S&P 500 F

exrate@us �ln 73:M1-10:M9 111..NELZF... NEER from UCL I

Real Activity

rgdp@us �ln 59:Q1-10:Q3 GDPC96 Real GDP, sa F

ip@us �ln 59:M1-10:M9 INDPRO Industrial Production Index, sa F

capu@us level 59:M1-10:M9 CAPUB04 Capacity Utilization Rate: Man., sa F

emp@us �ln 59:M1-10:M9 CE16OV Civilian Employment: thsnds, sa F

unemp@us level 59:M1-10:M9 UNRATE Civilian Unemployment Rate, sa F

Wages and prices

pgdp@us �ln 59:Q1-10:Q3 GDPDEF GDP De�ator, sa F

cpi@us �ln 59:M1-10:M9 CPIAUCSL CPI: Urban, All items, sa F

ppi@us �ln 59:M1-10:M9 PPIACO Producer Price Index, nsa F

earn@us �ln 59:M1-10:M9 AHEMAN Hourly Earnings: Man., nsa F

Money

mon0@us �ln 59:M1-10:M9 AMBSL Monetary Base, sa F

mon1@us �ln 59:M1-10:M9 M1SL Money: M1, sa F

mon2@us �ln 59:M1-10:M9 M2SL Money: M2, sa F

mon3@us �ln 59:M1-06:M2 M3SL Money: M3, sa F

Notes: Sources are abbreviated as follows: �F" - Federal Reserve Economic Data (FRED) and �I" - IMF International

Financial Statistics. When the names in the table are preceded with a pre�x �r", it indicates real variable adjusted either by

the CPI (stock variables) or CPI in�ation (�ow variables). Interest rate spread is calculated as the di¤erence between �rbndl"

and �rovnght".
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Table 2. Tests of Correct Speci�cation at h = 1

Output Growth In�ation

Variable KS AD Variable KS AD

rgdp@us 0.30 0.41 pgdp@us 0.48 0.03 *

rovnght@us 0.33 0.06 rovnght@us 0.27 0.00 *

rtbill@us 0.46 0.09 rtbill@us 0.24 0.00 *

rbnds@us 0.51 0.06 rbnds@us 0.29 0.00 *

rbndm@us 0.79 0.09 rbndm@us 0.34 0.01 *

rbndl@us 0.70 0.42 rbndl@us 0.38 0.01 *

rspread@us 0.21 0.02 * rspread@us 0.23 0.01 *

stockp@us 0.24 0.02 * stockp@us 0.49 0.01 *

exrate@us 0.57 0.00 * exrate@us 0.78 0.00 *

rrovnght@us 0.33 0.06 rrovnght@us 0.29 0.01 *

rrtbill@us 0.50 0.44 rrtbill@us 0.44 0.01 *

rrbnds@us 0.35 0.43 rrbnds@us 0.47 0.01 *

rrbndm@cn 0.39 0.03 * rrbndm@cn 0.33 0.01 *

rrbndl@us 0.40 0.02 * rrbndl@us 0.25 0.00 *

rstockp@us 0.08 0.01 * rstockp@us 0.47 0.01 *

rexrate@us 0.57 0.00 * rexrate@us 0.78 0.00 *

ip@us 0.29 0.42 rgdp@us 0.28 0.01 *

capu@us 0.23 0.04 * ip@us 0.53 0.01 *

emp@us 0.33 0.37 capu@us 0.22 0.01 *

unemp@us 0.03 * 0.01 * emp@us 0.27 0.01 *

pgdp@us 0.39 0.03 * unemp@us 0.18 0.01 *

cpi@us 0.25 0.03 * cpi@us 0.27 0.00 *

ppi@us 0.27 0.03 * ppi@us 0.34 0.01 *

earn@us 0.28 0.01 * earn@us 0.16 0.01 *

mon0@us 0.41 0.08 mon0@us 0.28 0.00 *

mon1@us 0.22 0.02 * mon1@us 0.35 0.01 *

mon2@us 0.32 0.03 * mon2@us 0.22 0.00 *

mon3@us 0.27 0.00 * mon3@us 0.33 0.01 *

rmon0@us 0.27 0.01 * rmon0@us 0.33 0.00 *

rmon1@us 0.27 0.05 rmon1@us 0.30 0.00 *

rmon2@us 0.59 0.08 rmon2@us 0.30 0.01 *

rmon3@us 0.65 0.02 * rmon3@us 0.74 0.03 *

Simple Average 0.37 0.35 Simple Average 0.56 0.05

BMA-OLS 0.14 0.01 * BMA-OLS 0.19 0.00 *

BMA 0.11 0.03 * BMA 0.79 0.39

BMA-MC3 0.00 * 0.00 * BMA-MC3 0.00 * 0.00 *

Factor 0.40 0.05 Factor 0.10 0.00 *

BVAR 0.00 * 0.00 * BVAR 0.01 * 0.00 *

Notes: We approxim ate the critica l values of KS and AD tests as in Kro ese et a l (2011).

* marks rejection at a 5% sign i�cance level.30



Table 3. Tests of Correct Speci�cation at h = 4

Output Growth In�ation

Variable KS AD Variable KS AD

rgdp@us 0.24 0.35 pgdp@us 0.36 0.36

rovnght@us 0.43 0.38 rovnght@us 0.04 0.00 *

rtbill@us 0.49 0.39 rtbill@us 0.01 * 0.00 *

rbnds@us 0.34 0.35 rbnds@us 0.02 0.00 *

rbndm@us 0.73 0.41 rbndm@us 0.04 0.00 *

rbndl@us 0.78 0.53 rbndl@us 0.07 0.01 *

rspread@us 0.28 0.35 rspread@us 0.35 0.05

stockp@us 0.36 0.39 stockp@us 0.45 0.37

exrate@us 0.46 0.00 * exrate@us 0.25 0.00 *

rrovnght@us 0.36 0.35 rrovnght@us 0.55 0.36

rrtbill@us 0.55 0.40 rrtbill@us 0.40 0.38

rrbnds@us 0.47 0.37 rrbnds@us 0.47 0.38

rrbndm@cn 0.48 0.36 rrbndm@cn 0.41 0.36

rrbndl@us 0.49 0.35 rrbndl@us 0.37 0.09

rstockp@us 0.34 0.39 rstockp@us 0.46 0.37

rexrate@us 0.46 0.00 * rexrate@us 0.25 0.00 *

ip@us 0.28 0.36 rgdp@us 0.52 0.36

capu@us 0.42 0.36 ip@us 0.30 0.36

emp@us 0.27 0.35 capu@us 0.29 0.37

unemp@us 0.19 0.08 emp@us 0.13 0.08

pgdp@us 0.56 0.38 unemp@us 0.32 0.36

cpi@us 0.58 0.35 cpi@us 0.28 0.05

ppi@us 0.64 0.37 ppi@us 0.38 0.35

earn@us 0.26 0.36 earn@us 0.06 0.03

mon0@us 0.49 0.36 mon0@us 0.33 0.36

mon1@us 0.31 0.36 mon1@us 0.21 0.02

mon2@us 0.42 0.35 mon2@us 0.24 0.08

mon3@us 0.25 0.04 mon3@us 0.08 0.02

rmon0@us 0.23 0.06 rmon0@us 0.49 0.35

rmon1@us 0.59 0.37 rmon1@us 0.12 0.35

rmon2@us 0.68 0.41 rmon2@us 0.18 0.36

rmon3@us 0.62 0.08 rmon3@us 0.76 0.08

Simple Average 0.15 0.36 Simple Average 0.34 0.36

BMA-OLS 0.22 0.37 BMA-OLS 0.01 * 0.00 *

BMA 0.43 0.35 BMA 0.25 0.35

BMA-MC3 0.00 * 0.00 * BMA-MC3 0.05 0.01 *

Factor 0.51 0.38 Factor 0.42 0.04

BVAR 0.00 * 0.00 * BVAR 0.02 0.00 *

Notes: The tab le rep orts m in imum p-values of the KS and AD tests (approximated as in Kro ese et a l (2011)) based

on four subsets fz1; z1+h; z1+2h; :::g,fz2; z2+h; z2+2h; :::g,fz3; z3+h; z3+2h; :::g , and fz4; z4+h; z4+2h; :::g.

* ind icates rejection at 5% sign i�cance w ith Bonferron i b ounds.
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Table 4. Ljung-Box test at h = 1

Output Growth In�ation

Variable (zt+h � �z) (zt+h � �z)2 Variable (zt+h � �z) (zt+h � �z)2

rgdp@us 0.41 0.01 * pgdp@us 0.52 0.01 *

rovnght@us 0.18 0.35 rovnght@us 0.33 0.01 *

rtbill@us 0.04 * 0.12 rtbill@us 0.36 0.03 *

rbnds@us 0.19 0.16 rbnds@us 0.44 0.00 *

rbndm@us 0.14 0.03 * rbndm@us 0.37 0.01 *

rbndl@us 0.21 0.02 * rbndl@us 0.31 0.01 *

rspread@us 0.27 0.16 rspread@us 0.25 0.01 *

stockp@us 0.87 0.26 stockp@us 0.67 0.00 *

exrate@us 0.48 0.31 exrate@us 0.37 0.01 *

rrovnght@us 0.41 0.00 * rrovnght@us 0.56 0.09

rrtbill@us 0.28 0.04 * rrtbill@us 0.41 0.00 *

rrbnds@us 0.30 0.05 rrbnds@us 0.38 0.00 *

rrbndm@cn 0.38 0.01 * rrbndm@cn 0.33 0.00 *

rrbndl@us 0.35 0.00 * rrbndl@us 0.44 0.00 *

rstockp@us 0.84 0.17 rstockp@us 0.66 0.00 *

rexrate@us 0.48 0.31 rexrate@us 0.37 0.01 *

ip@us 0.23 0.42 rgdp@us 0.27 0.00 *

capu@us 0.45 0.32 ip@us 0.55 0.01 *

emp@us 0.31 0.12 capu@us 0.28 0.01 *

unemp@us 0.55 0.06 emp@us 0.36 0.00 *

pgdp@us 0.07 0.07 unemp@us 0.47 0.01 *

cpi@us 0.43 0.12 cpi@us 0.14 0.00 *

ppi@us 0.94 0.14 ppi@us 0.19 0.00 *

earn@us 0.50 0.07 earn@us 0.47 0.07

mon0@us 0.69 0.03 * mon0@us 0.79 0.02 *

mon1@us 0.05 0.06 mon1@us 0.60 0.02 *

mon2@us 0.76 0.00 * mon2@us 0.73 0.02 *

mon3@us 0.49 0.00 * mon3@us 0.40 0.36

rmon0@us 0.68 0.09 rmon0@us 0.88 0.00 *

rmon1@us 0.08 0.55 rmon1@us 0.51 0.00 *

rmon2@us 0.69 0.00 * rmon2@us 0.77 0.00 *

rmon3@us 0.55 0.00 * rmon3@us 0.44 0.17

Simple Average 0.63 0.10 Simple Average 0.30 0.03 *

BMA-OLS 0.59 0.31 BMA-OLS 0.12 0.08

BMA 0.15 0.14 BMA 0.06 0.07

BMA-MC3 0.00 * 0.00 * BMA-MC3 0.00 * 0.00 *

Factor 0.44 0.66 Factor 0.24 0.00 *

BVAR 0.20 0.00 * BVAR 0.00 * 0.00 *

Notes: The tab le rep orts p-values of the LB test based on a �2(4). * ind icates rejection at 5% sign i�cance level.
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Table 5. Ljung-Box test at h = 4

Output Growth In�ation

Variable (zt+h � �z) (zt+h � �z)2 Variable (zt+h � �z) (zt+h � �z)2

rgdp@us 0.10 0.19 pgdp@us 0.11 0.00 *

rovnght@us 0.01 * 0.08 rovnght@us 0.17 0.03

rtbill@us 0.00 * 0.02 rtbill@us 0.21 0.11

rbnds@us 0.05 0.02 rbnds@us 0.18 0.00 *

rbndm@us 0.24 0.01 * rbndm@us 0.14 0.04

rbndl@us 0.22 0.04 rbndl@us 0.09 0.01 *

rspread@us 0.53 0.38 rspread@us 0.09 0.06

stockp@us 0.25 0.34 stockp@us 0.21 0.03

exrate@us 0.54 0.14 exrate@us 0.59 0.07

rrovnght@us 0.12 0.11 rrovnght@us 0.32 0.06

rrtbill@us 0.21 0.09 rrtbill@us 0.15 0.12

rrbnds@us 0.28 0.45 rrbnds@us 0.41 0.14

rrbndm@cn 0.56 0.06 rrbndm@cn 0.27 0.02

rrbndl@us 0.46 0.03 rrbndl@us 0.29 0.14

rstockp@us 0.28 0.43 rstockp@us 0.21 0.03

rexrate@us 0.54 0.14 rexrate@us 0.59 0.07

ip@us 0.19 0.64 rgdp@us 0.05 0.03

capu@us 0.08 0.15 ip@us 0.12 0.03

emp@us 0.11 0.12 capu@us 0.27 0.08

unemp@us 0.23 0.45 emp@us 0.16 0.01 *

pgdp@us 0.57 0.26 unemp@us 0.05 0.00 *

cpi@us 0.19 0.16 cpi@us 0.31 0.07

ppi@us 0.29 0.19 ppi@us 0.13 0.00 *

earn@us 0.29 0.43 earn@us 0.07 0.00 *

mon0@us 0.26 0.14 mon0@us 0.07 0.00 *

mon1@us 0.16 0.34 mon1@us 0.07 0.00 *

mon2@us 0.57 0.12 mon2@us 0.13 0.02

mon3@us 0.20 0.02 mon3@us 0.02 0.22

rmon0@us 0.50 0.47 rmon0@us 0.26 0.00 *

rmon1@us 0.16 0.64 rmon1@us 0.02 0.01 *

rmon2@us 0.37 0.10 rmon2@us 0.05 0.01 *

rmon3@us 0.32 0.07 rmon3@us 0.04 0.04

Simple Average 0.46 0.36 Simple Average 0.16 0.01 *

BMA-OLS 0.35 0.49 BMA-OLS 0.29 0.28

BMA 0.34 0.11 BMA 0.15 0.12

BMA-MC3 0.00 * 0.13 BMA-MC3 0.00 * 0.01 *

Factor 0.70 0.05 Factor 0.38 0.00 *

BVAR 0.03 0.66 BVAR 0.03 0.00 *

Notes: The tab le rep orts m in imum p-values of the LB test based on a �2(4) for four subsets

fz1; z1+h; z1+2h; :::g, fz2; z2+h; z2+2h; :::g, fz3; z3+h; z3+2h; :::g, and fz4; z4+h; z4+2h; :::g.

* ind icates rejection at 5% sign i�cance w ith Bonferron i b ounds.
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Table 6. Andrews (1993) QLR test at h = 1

Output Growth In�ation

Variable zt+h z2t+h Variable zt+h z2t+h

rgdp@us 0.78 0.89 pgdp@us 1.00 1.00

rovnght@us 0.02 * 1985:III 0.01 * 1985:I rovnght@us 1.00 0.86

rtbill@us 0.06 0.04 * 1985:III rtbill@us 1.00 0.80

rbnds@us 0.12 0.07 rbnds@us 1.00 0.70

rbndm@us 0.06 0.05 rbndm@us 1.00 0.81

rbndl@us 0.16 0.11 rbndl@us 1.00 0.75

rspread@us 1.00 1.00 rspread@us 1.00 1.00

stockp@us 1.00 1.00 stockp@us 1.00 1.00

exrate@us 0.39 0.67 exrate@us 1.00 1.00

rrovnght@us 0.57 0.64 rrovnght@us 1.00 1.00

rrtbill@us 0.60 0.79 rrtbill@us 1.00 1.00

rrbnds@us 0.69 0.84 rrbnds@us 1.00 1.00

rrbndm@cn 0.66 0.80 rrbndm@cn 1.00 1.00

rrbndl@us 0.78 0.89 rrbndl@us 1.00 1.00

rstockp@us 1.00 1.00 rstockp@us 1.00 1.00

rexrate@us 0.39 0.67 rexrate@us 1.00 1.00

ip@us 0.49 0.63 rgdp@us 1.00 0.84

capu@us 0.46 0.35 ip@us 1.00 0.79

emp@us 0.89 1.00 capu@us 1.00 0.63

unemp@us 0.29 0.56 emp@us 1.00 0.82

pgdp@us 0.11 0.07 unemp@us 0.57 0.43

cpi@us 0.19 0.12 cpi@us 1.00 1.00

ppi@us 1.00 1.00 ppi@us 0.76 0.69

earn@us 0.87 0.87 earn@us 1.00 1.00

mon0@us 0.66 0.68 mon0@us 1.00 0.85

mon1@us 0.50 0.66 mon1@us 1.00 1.00

mon2@us 0.60 0.85 mon2@us 1.00 0.58

mon3@us 0.88 0.85 mon3@us 1.00 0.68

rmon0@us 0.89 1.00 rmon0@us 1.00 0.85

rmon1@us 0.89 0.81 rmon1@us 1.00 0.57

rmon2@us 0.67 0.84 rmon2@us 1.00 0.59

rmon3@us 0.66 0.61 rmon3@us 1.00 0.66

Simple Average 0.65 0.82 Simple Average 1.00 1.00

BMA-OLS 0.84 0.56 BMA-OLS 1.00 1.00

BMA 0.60 0.28 BMA 1.00 1.00

BMA-MC3 0.00 * 1988:III 0.00 * 1988:III BMA-MC3 0.00 * 1975:IV 0.00 * 1975:IV

Factor 0.87 0.74 Factor 0.85 0.38

BVAR 0.37 0.63 BVAR 1.00 0.85

Notes: The tab le rep orts p-values and break dates of the Andrew s QLR test. * ind icates rejection at 5% sign i�cance level.
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Table 7. Andrews (1993) QLR test at h = 4

Output Growth In�ation

Variable zt+h z2t+h Variable zt+h z2t+h

rgdp@us 0.36 0.19 pgdp@us 0.52 1.00

rovnght@us 0.00 * 0.00 * rovnght@us 0.44 0.59

rtbill@us 0.00 * 0.00 * rtbill@us 0.76 1.00

rbnds@us 0.00 * 0.00 * rbnds@us 0.72 0.89

rbndm@us 0.02 0.00 * rbndm@us 0.04 0.03

rbndl@us 0.01 * 0.00 * rbndl@us 0.19 0.16

rspread@us 0.51 0.23 rspread@us 0.08 0.44

stockp@us 0.18 0.02 stockp@us 0.49 0.24

exrate@us 0.06 0.05 exrate@us 0.00 * 0.00 *

rrovnght@us 0.32 0.09 rrovnght@us 0.54 0.35

rrtbill@us 0.16 0.00 * rrtbill@us 0.73 0.46

rrbnds@us 0.11 0.00 * rrbnds@us 0.64 0.71

rrbndm@cn 0.06 0.00 * rrbndm@cn 0.63 0.89

rrbndl@us 0.06 0.00 * rrbndl@us 0.06 0.02

rstockp@us 0.16 0.02 rstockp@us 0.46 0.21

rexrate@us 0.06 0.05 rexrate@us 0.00 * 0.00 *

ip@us 0.65 0.24 rgdp@us 0.40 0.70

capu@us 0.10 0.00 * ip@us 0.54 0.68

emp@us 0.44 0.30 capu@us 0.01 * 0.00 *

unemp@us 0.05 0.00 * emp@us 0.27 0.60

pgdp@us 0.08 0.14 unemp@us 0.73 0.51

cpi@us 0.00 * 0.00 * cpi@us 0.33 0.09

ppi@us 0.20 0.01 * ppi@us 0.49 0.83

earn@us 0.69 0.34 earn@us 0.56 1.00

mon0@us 0.06 0.02 mon0@us 0.22 0.64

mon1@us 0.39 0.18 mon1@us 0.00 * 0.00 *

mon2@us 0.29 0.04 mon2@us 0.52 0.82

mon3@us 0.54 0.06 mon3@us 0.81 0.81

rmon0@us 0.25 0.08 rmon0@us 0.14 0.05

rmon1@us 0.20 0.00 * rmon1@us 0.00 * 0.00 *

rmon2@us 0.05 0.00 * rmon2@us 0.33 0.43

rmon3@us 0.21 0.00 * rmon3@us 0.45 0.88

Simple Average 0.22 0.08 Simple Average 0.38 0.23

BMA-OLS 0.07 0.03 BMA-OLS 0.02 0.00 *

BMA 0.02 0.00 * BMA 0.51 0.35

BMA-MC3 0.00 * 0.00 * BMA-MC3 0.00 * 0.00 *

Factor 0.18 0.34 Factor 0.76 0.45

BVAR 0.00 * 0.00 * BVAR 0.05 0.02

Notes: The tab le rep orts m in imum p-values of the Andrew s QLR test based on four subsets

fz1; z1+h; z1+2h; :::g, fz2; z2+h; z2+2h; :::g, fz3; z3+h; z3+2h; :::g, and fz4; z4+h; z4+2h; :::g.

* ind icates rejection at 5% sign i�cance level w ith Bonferron i b ounds.
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Table 8. Berkowitz (2001) Likelihood Ratio test at h = 1

Output Growth In�ation

Variable � = 0; � = 1 � = 0 joint Variable � = 0; � = 1 � = 0 joint

rbndm@us 0.00 * 0.14 0.00 * rbndm@us 0.00 * 0.82 0.00 *

rbndl@us 0.00 * 0.15 0.00 * rbndl@us 0.00 * 0.86 0.00 *

rspread@us 0.00 * 0.30 0.00 * rspread@us 0.00 * 0.84 0.00 *

stockp@us 0.00 * 0.67 0.00 * stockp@us 0.00 * 0.88 0.00 *

exrate@us 0.29 0.53 0.39 exrate@us 0.00 * 0.64 0.00 *

rrovnght@us 0.00 * 0.33 0.00 * rrovnght@us 0.00 * 0.64 0.00 *

rrtbill@us 0.00 * 0.33 0.00 * rrtbill@us 0.00 * 0.88 0.00 *

rrbnds@us 0.00 * 0.33 0.01 * rrbnds@us 0.00 * 0.92 0.00 *

rrbndm@cn 0.00 * 0.15 0.00 * rrbndm@cn 0.00 * 0.49 0.00 *

rrbndl@us 0.00 * 0.13 0.00 * rrbndl@us 0.00 * 0.65 0.00 *

rstockp@us 0.00 * 0.62 0.00 * rstockp@us 0.00 * 0.88 0.00 *

rexrate@us 0.29 0.53 0.39 rexrate@us 0.00 * 0.64 0.00 *

ip@us 0.03 * 0.30 0.04 * rgdp@us 0.00 * 0.23 0.00 *

capu@us 0.00 * 0.60 0.01 * ip@us 0.00 * 0.60 0.00 *

emp@us 0.02 * 0.48 0.04 * capu@us 0.00 * 0.71 0.00 *

unemp@us 0.00 * 0.67 0.00 * emp@us 0.00 * 0.57 0.00 *

pgdp@us 0.00 * 0.26 0.00 * unemp@us 0.00 * 0.43 0.00 *

cpi@us 0.00 * 0.22 0.00 * cpi@us 0.00 * 0.78 0.00 *

ppi@us 0.00 * 0.76 0.00 * ppi@us 0.00 * 0.48 0.00 *

earn@us 0.00 * 0.95 0.00 * earn@us 0.00 * 0.99 0.00 *

mon0@us 0.00 * 0.80 0.01 * mon0@us 0.00 * 0.65 0.00 *

mon1@us 0.00 * 0.21 0.00 * mon1@us 0.00 * 0.95 0.00 *

mon2@us 0.00 * 0.22 0.00 * mon2@us 0.00 * 0.89 0.00 *

mon3@us 0.00 * 0.86 0.00 * mon3@us 0.00 * 0.78 0.00 *

rmon0@us 0.00 * 0.69 0.00 * rmon0@us 0.00 * 0.44 0.00 *

rmon1@us 0.00 * 0.08 0.00 * rmon1@us 0.00 * 0.87 0.00 *

rmon2@us 0.00 * 0.34 0.00 * rmon2@us 0.00 * 0.93 0.00 *

rmon3@us 0.01 * 0.99 0.03 * rmon3@us 0.00 * 0.62 0.10

Simple Average 0.48 0.93 0.69 Simple Average 0.00 * 0.62 0.00 *

BMA-OLS 0.00 * 0.91 0.00 * BMA-OLS 0.00 * 0.72 0.00 *

BMA 0.02 * 0.11 0.03 * BMA 0.10 0.40 0.10

BMA-MC3 0.00 * 0.00 * 0.00 * BMA-MC3 0.00 * 0.00 * 0.00 *

Factor 0.00 * 0.43 0.00 * Factor 0.00 * 0.71 0.00 *

BVAR 0.00 * 0.05 0.00 * BVAR 0.00 * 0.00 * 0.00 *

Notes: The tab le rep orts p-values of Berkow itz LR test under various nu ll hypotheses. * ind icates rejection at 5% sign i�cance level.
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Table 9. Berkowitz (2001) Likelihood Ratio test at h = 4

Output Growth In�ation

Variable � = 0; � = 1 � = 0 joint Variable � = 0; � = 1 � = 0 joint

rgdp@us 0.03 0.62 0.06 pgdp@us 0.30 0.28 0.35

rovnght@us 0.26 0.02 0.08 rovnght@us 0.00 * 0.13 0.01 *

rtbill@us 0.39 0.00 * 0.01 * rtbill@us 0.00 * 0.20 0.00 *

rbnds@us 0.42 0.02 0.08 rbnds@us 0.00 * 0.21 0.00 *

rbndm@us 0.83 0.10 0.44 rbndm@us 0.00 * 0.22 0.02

rbndl@us 0.72 0.11 0.46 rbndl@us 0.01 * 0.17 0.02

rspread@us 0.09 0.30 0.20 rspread@us 0.16 0.22 0.21

stockp@us 0.24 0.36 0.44 stockp@us 0.08 0.26 0.16

exrate@us 0.41 0.55 0.57 exrate@us 0.14 0.11 0.31

rrovnght@us 0.25 0.24 0.39 rrovnght@us 0.39 0.33 0.44

rrtbill@us 0.80 0.21 0.65 rrtbill@us 0.24 0.33 0.30

rrbnds@us 0.50 0.18 0.55 rrbnds@us 0.17 0.16 0.15

rrbndm@cn 0.26 0.12 0.23 rrbndm@cn 0.10 0.22 0.11

rrbndl@us 0.27 0.10 0.09 rrbndl@us 0.07 0.22 0.08

rstockp@us 0.22 0.29 0.41 rstockp@us 0.10 0.20 0.18

rexrate@us 0.41 0.55 0.57 rexrate@us 0.14 0.11 0.31

ip@us 0.04 0.69 0.09 rgdp@us 0.15 0.23 0.26

capu@us 0.39 0.38 0.53 ip@us 0.28 0.40 0.38

emp@us 0.03 0.65 0.06 capu@us 0.19 0.04 0.08

unemp@us 0.11 0.17 0.10 emp@us 0.17 0.41 0.30

pgdp@us 0.46 0.36 0.55 unemp@us 0.12 0.17 0.22

cpi@us 0.08 0.02 0.04 cpi@us 0.03 0.13 0.05

ppi@us 0.17 0.45 0.21 ppi@us 0.11 0.08 0.13

earn@us 0.43 0.53 0.54 earn@us 0.04 0.17 0.10

mon0@us 0.44 0.36 0.51 mon0@us 0.13 0.18 0.10

mon1@us 0.15 0.48 0.24 mon1@us 0.02 0.20 0.05

mon2@us 0.35 0.28 0.39 mon2@us 0.03 0.18 0.05

mon3@us 0.11 0.11 0.23 mon3@us 0.02 0.33 0.06

rmon0@us 0.07 0.23 0.15 rmon0@us 0.25 0.12 0.11

rmon1@us 0.18 0.02 0.06 rmon1@us 0.09 0.11 0.08

rmon2@us 0.37 0.25 0.39 rmon2@us 0.07 0.10 0.02

rmon3@us 0.46 0.43 0.57 rmon3@us 0.50 0.15 0.55

Simple Average 0.02 0.50 0.04 Simple Average 0.25 0.18 0.31

BMA-OLS 0.06 0.30 0.06 BMA-OLS 0.00 * 0.07 0.02

BMA 0.32 0.24 0.40 BMA 0.34 0.11 0.22

BMA-MC3 0.00 * 0.00 * 0.00 * BMA-MC3 0.00 * 0.00 * 0.00 *

Factor 0.23 0.58 0.34 Factor 0.02 0.11 0.05

BVAR 0.00 * 0.02 0.00 * BVAR 0.01 * 0.12 0.01 *

Notes: The tab le rep orts m in imum p-values of the Berkow itz LR test under d i¤erent nu ll hypotheses based on four subsets

fz1; z1+h; z1+2h; :::g, fz2; z2+h; z2+2h; :::g, fz3; z3+h; z3+2h; :::g, and fz4; z4+h; z4+2h; :::g.

* ind icates rejection at 5% sign i�cance level w ith Bonferron i b ounds.
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Table 10. Doornik and Hansen (2008) test

Output Growth In�ation

Variable h = 1 h = 4 Variable h = 1 h = 4

rgdp@us 0.18 0.05 pgdp@us 0.19 0.01 *

rovnght@us 0.56 0.05 rovnght@us 0.74 0.01 *

rtbill@us 0.42 0.07 rtbill@us 0.51 0.09

rbnds@us 0.48 0.05 rbnds@us 0.64 0.04

rbndm@us 0.31 0.02 rbndm@us 0.55 0.01 *

rbndl@us 0.54 0.04 rbndl@us 0.46 0.01 *

rspread@us 0.32 0.03 rspread@us 0.48 0.05

stockp@us 0.46 0.02 stockp@us 0.23 0.02

exrate@us 0.20 0.01 * exrate@us 0.34 0.05

rrovnght@us 0.29 0.00 * rrovnght@us 0.35 0.04

rrtbill@us 0.25 0.02 rrtbill@us 0.28 0.01 *

rrbnds@us 0.37 0.01 * rrbnds@us 0.29 0.01 *

rrbndm@cn 0.30 0.07 rrbndm@cn 0.25 0.02

rrbndl@us 0.38 0.04 rrbndl@us 0.39 0.03

rstockp@us 0.39 0.02 rstockp@us 0.22 0.05

rexrate@us 0.20 0.01 * rexrate@us 0.34 0.05

ip@us 0.05 0.04 rgdp@us 0.35 0.04

capu@us 0.13 0.03 ip@us 0.33 0.04

emp@us 0.36 0.09 capu@us 0.35 0.02

unemp@us 0.37 0.02 emp@us 0.54 0.29

pgdp@us 0.33 0.21 unemp@us 0.56 0.03

cpi@us 0.37 0.06 cpi@us 0.52 0.08

ppi@us 0.25 0.22 ppi@us 0.21 0.02

earn@us 0.67 0.21 earn@us 0.50 0.04

mon0@us 0.15 0.04 mon0@us 0.17 0.07

mon1@us 0.42 0.08 mon1@us 0.16 0.09

mon2@us 0.44 0.08 mon2@us 0.19 0.01 *

mon3@us 0.16 0.02 mon3@us 0.44 0.04

rmon0@us 0.22 0.09 rmon0@us 0.43 0.01 *

rmon1@us 0.51 0.17 rmon1@us 0.16 0.00 *

rmon2@us 0.43 0.06 rmon2@us 0.32 0.03

rmon3@us 0.30 0.02 rmon3@us 0.23 0.11

Simple Average 0.03 * 0.02 Simple Average 0.19 0.00 *

BMA-OLS 0.39 0.20 BMA-OLS 0.83 0.04

BMA 0.05 0.13 BMA 0.20 0.01 *

BMA-MC3 0.00 * 0.15 BMA-MC3 0.04 * 0.29

Factor 0.28 0.12 Factor 0.59 0.12

BVAR 0.00 * 0.00 * BVAR 0.00 * 0.00 *

Notes: The tab le rep orts p-values for h = 1 and m in imum p-values for h = 4 of the Doorn ik-Hansen test.

* ind icates rejection at 5% sign i�cance level (w ith Bonferron i b ounds for h = 4 case).
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Table 11, Panel A. Summary of the Results (h=1)
Uniformity Un-correlation Stability Unif. & Uncorr. (Berkowitz) DH
KS AD zt+h z2t+h zt+h z2t+h � = 0; � = 1 � = 0 joint

Output Growth
AR yes yes yes no yes yes no yes no yes
ADL 30/31 13/31 30/31 20/31 30/31 29/31 2/31 31/31 2/31 31/31
Simple Av. yes yes yes yes yes yes yes yes yes no
BMA-OLS yes no yes yes yes yes no yes no yes
BMA yes no yes yes yes yes no yes no yes
BMA-MC3 no no no no no no no no no no
Factor yes yes yes yes yes yes no yes no yes
BVAR no no yes no yes yes no yes no no

In�ation
AR yes no yes no yes yes no yes no yes
ADL 31/31 0/31 31/31 4/31 31/31 31/31 0/31 31/31 1/31 31/31
Simple Av. yes yes yes no yes yes no yes no yes
BMA-OLS yes no yes yes yes yes no yes no yes
BMA yes yes yes yes yes yes yes yes yes yes
BMA-MC3 no no no no no no no no no no
Factor yes no yes no yes yes no yes no yes
BVAR no no no no yes yes no no no no

Table 11, Panel B. Summary of the Results (h=4)
Uniformity Un-correlation Stability Unif. & Uncorr. (Berkowitz) DH
KS AD zt+h z2t+h zt+h z2t+h � = 0; � = 1 � = 0 joint

Output Growth
AR yes yes yes yes yes yes yes yes yes yes
ADL 31/31 29/31 29/31 30/31 26/31 15/31 31/31 30/31 30/31 27/31
Simple Av. yes yes yes yes yes yes yes yes yes yes
BMA-OLS yes yes yes yes yes yes yes yes yes yes
BMA yes yes yes yes yes no yes yes yes yes
BMA-MC3 no no no yes no no no no no yes
Factor yes yes yes yes yes yes yes yes yes yes
BVAR no no yes yes no no no yes no no

In�ation
AR yes yes yes no yes yes yes yes yes no
ADL 30/31 24/31 31/31 20/31 26/31 26/31 26/31 31/31 28/31 23/31
Simple Av. yes yes yes no yes yes yes yes yes no
BMA-OLS no no yes yes yes no no yes yes yes
BMA yes yes yes yes yes yes yes yes yes no
BMA-MC3 yes no no no no no no no no yes
Factor yes yes yes no yes yes yes yes yes yes
BVAR yes no yes no yes yes no yes no no

Notes: The tab le shows whether the sp eci�c test ind icated by the column provides statistica l ev idence in support of the prop er calibration

of P IT s implied by the models in each row , (e.g . "yes" in the uniform ity column means the test do es not reject un iform ity). For the ADL models,

we rep ort how many sp eci�cations (across the various pred ictors) are not rejected by the sp eci�ed test. Rejections are at 5% sign i�cance level as

listed in Tables 2-10.
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Figure 1, Panel A: PITs for ADL Models of Output Growth at h = 1
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Figure 1, Panel B: PITs for Models Combining Large Data Sets of Output Growth at h = 1
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Notes: The histograms depict the empirical distributions of the PITs. Solid line represents the number of draws that are

expected to be in each bin under U(0,1) distribution. The dashed lines represent the 95% con�dence interval constructed

under the normal approximation of a binomial distribution.
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Figure 2, Panel A: PITs for ADL Models of In�ation at h = 1
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Figure 2, Panel B: PITs for Models Combining Large Data Sets of In�ation at h = 1
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BVAR

Notes: The histograms depict the empirical distributions of the PITs. Solid line represents the number of draws that are

expected to be in each bin under U(0,1) distribution. The dashed lines represent the 95% con�dence interval constructed

under the normal approximation of a binomial distribution.
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