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Abstract

This chapter reviews forecasting methodologies that are useful for macroecono-

mists. The goal is to provide guidance to macroeconomists regarding which methods

to use when facing a particular forecasting problem at hand. The chapter is divided in

two parts. The �rst part is an overview of econometric methods available for forecast

evaluation, including both traditional methods as well as new methodologies that are

robust to instabilities. The second part addresses speci�c issues of importance in prac-

tice, including forecasting output growth and in�ation as well as the use of real-time

data and structural models for forecasting.
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1 Introduction

This chapter o¤ers a review of forecasting methodologies and empirical applications that are

useful for macroeconomists. The chapter is divided in two parts. The �rst part overviews

econometric methods available for forecast evaluation, including both traditional methods

as well as new methodologies that are robust to instabilities. We discuss their usefulness,

their assumptions as well as their implementation, to provide practical guidance to macro-

economists. The second part addresses special issues of interest to forecasters, including

forecasting output growth and in�ation as well as the use of real-time data and structural

models for forecasting.

Part I. Econometric Methodologies for Forecasting in
Macroeconomics

2 Methods for Forecast Evaluation

An important area of research over the past couple of decades has been the development of

formal econometric techniques for evaluating the accuracy of forecasts. The problem can be

viewed in a decision-theoretic context: if yt+1 is the variable of interest and ft its forecast

made at time t, the accuracy of ft is judged by the expected loss E [L(yt+1; ft)] ; for a choice

of loss function L (�) that re�ects the type of forecast (point-, interval- or density-) and the
decision problem of the forecaster. The vast majority of empirical work has typically focused

on the quadratic or absolute error loss, but there is some literature discussing di¤erent

choices of loss function, e.g., Diebold and Lopez (1996), Amisano and Giacomini (2007),

Giacomini and Komunjer (2006), Leitch and Tanner (1991), West, Edison and Cho (1993).

See also Elliott, Komunjer and Timmermann (2005) for a method for eliciting forecasters�

loss functions from survey data. Most of the methods discussed in the remainder of this

chapter will be applicable to a general loss function, and we will provide some concrete

examples below.

The expected loss of a forecast is in practice estimated using sample data. This can be

done in a relatively straightforward manner if the data consists of a sequence of forecasts and

corresponding realizations, as is the case for applications analyzing the accuracy of survey-

based forecasts. The econometric methods for this case are standard, and we refer to, e.g.,

Diebold�s (2007) textbook for further discussion. In many empirically relevant situations,
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however, a forecaster is interested in assessing the accuracy of model-based forecasts using

macroeconomic and �nancial time series data. In this case a sequence of forecasts is obtained

by a so-called "pseudo-out-of-sample" forecasting exercise, which we describe formally below.

Informally, this involves pretending that one could go back in time to a given date R in the

sample (of total size T ) and mimic what an actual forecaster would have done as time went

by: estimate the model using the data up to time R, produce a forecast for time R + 1,

wait until R + 1, observe the realization of the variable and compare it to the forecast,

re-estimate the model including the data at time R + 1, produce a forecast for R + 2, wait

until R + 2 and compare it to the actual realization and so on. This procedure results in

a sequence of P = T � R forecasts
n
ft(b�t)oT�1

t=R
and of corresponding out-of-sample lossesn

L(yt+1; ft(b�t))oT�1
t=R
which depend on the data and on parameters estimated over a sequence

of overlapping samples. The accuracy of the forecast is then estimated by the average of the

out-of-sample losses

\E [L(yt+1; ft)] =
1

P

T�1X
t=R

L(yt+1; ft(b�t)); (1)

which, in the typical case of a quadratic loss, is the Mean Square Forecast Error (MSFE).

This estimate of the accuracy of the forecast is not in general directly interpretable, as

it depends on the units of measurement of yt: In practice therefore one typically relates the

accuracy of a model to that of a benchmark model, or compares the accuracy of multiple

competing models by comparing their out-of-sample average losses (1): In the remainder

of this section we focus on testing the relative predictive ability of models, and separately

consider the case of pairwise and multiple comparisons. Even though the technicalities are

di¤erent, the basic idea of all the approaches that we discuss below is to develop statistical

tests to assess whether the average out-of-sample losses of competing models are signi�cantly

di¤erent from each other in a way that takes into account their dependence on out-of-sample

data, in-sample data and recursively estimated parameters.

A further econometric challenge that arises in the context of developing such tests is the

fact that one needs to pay attention to whether the models compared are nested (in the

sense that one model can be obtained from the other by imposing parameter restrictions) or

non-nested. We will discuss this issue and the possible solutions below.

Finally, we will brie�y consider the extension to conditional predictive ability testing,

which goes beyond assessing the forecasting performance of models on average.
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2.1 The Econometric Environment

In the following, we assume that the researcher is interested in forecasting the scalar variable

yt and that she has available a number of competing forecasting models. Out-of-sample

testing involves dividing a sample of size T into an in-sample portion of size R and an

out-of-sample portion of size P . The models are then �rst estimated using data from 1

to R and the parameters are used to produce h� step ahead forecasts. We denote the

�rst forecast from model i by f (i)R (b�R). Some of the approaches that we discuss below do
not impose restrictions on the type of model (e.g., linear or non-linear) or the estimation

method used in-sample, whereas others are only applicable in special cases (e.g., the linear

model estimated by OLS). We will make these assumptions explicit in each subsection. The

forecasts at time R are then compared to the realization yR+h and the corresponding loss for

model i is denoted by L(i)(yR+h; f
(i)
R (
b�R)). The second sets of h� step ahead forecasts are

obtained at time R+1 by either: keeping the parameter estimates �xed at b�R (�xed scheme);
re-estimating the models over data indexed 1; :::; R + 1 (recursive scheme) or re-estimating

the models over data indexed 2; :::; R+1 (rolling scheme). The loss for model i is then given

by L(i)(yR+1+h; f
(i)
R+1(

b�R+1)), where the de�nition of b�R+1 depends on the estimation scheme
used. Iterating this procedure until all sample observations are exhausted yields a sequence

of P = T � h�R + 1 out-of-sample losses
n
L(i)(yt+h; f

(i)
t (b�t))oT�h

t=R
for each model i:

It is important to note that most of the techniques described below can be applied regard-

less of whether the forecasts are point-, volatility-, interval-, probability- or density-forecasts.

The only di¤erence lies in selecting the appropriate loss function for each type of forecast. Ex-

amples of loss functions for point forecasts are: (i) (quadratic) L (yt+h; ft) = (yt+h � ft)2 ; (ii)
(absolute error) L (yt+h; ft) = jyt+h�ftj; (iii) (lin-lin) L (yt+h; ft) = (�� 1 (yt+h � ft < 0)) (yt+h � ft)
for � 2 (0; 1) ; (iv) (linex) L (yt+h; ft) = exp (a (yt+h � ft)) � a (yt+h � ft) � 1 for a 2
R; (v) (direction-of-change) L (yt+h; ft) = 1 fsign(yt+h � yt) 6= sign(ft � yt)g : Loss func-
tions for conditional variance forecasts are (i) L (yt+h; ft) =

�
log(y2t+h)� log (ft)

�2
; (ii)

L (yt+h; ft) =
�
y2t+h
ft
� 1
�2
; (iii) L (yt+h; ft) = log (ft) +

y2t+h
ft
. For probability forecasts, we

have L (yt+h; ft) = (ft � It)2 ; where It = 1 if the event occurred and is 0 otherwise. For

density forecasts one can consider L (yt+h; ft) = log ft (yt+h) :

2.2 Pairwise (Unconditional) Predictive Ability Testing

When there are only two models, one can compare their accuracy by computing the di¤erence

in, say, MSFEs, ask whether the di¤erence is signi�cantly di¤erent from zero and, if so, choose

4



the model with the smallest MSFE. For a general loss function, a test of equal predictive

ability can be implemented by �rst constructing the time series of P out-of-sample loss

di¤erences
n
�Lt+h

�b�t�oT�h
t=R

where1 �Lt+h = L(1)(yt+h; f
(1)
t (b�t)) � L(2)(yt+h; f (2)t (b�t)) and

then conducting a t-test of the hypothesis H0 : � = 0 in the regression

�Lt+h

�b�t� = �+ "t+h; t = R; :::; T � h: (2)

The test has a standard normal asymptotic distribution, provided one uses the correct stan-

dard errors which take into account the time-series properties of "t+h and the dependence of

�Lt+h in (2) on estimated in-sample parameters. The former challenge is relatively easy to

deal with and has long been addressed in the literature, starting from Diebold and Mariano

(1995), who suggested considering the test statistic�����
p
Pb�b�
����� =

������ 1pP
T�hX
t=R

�Lt+h

�b�t�b�
������ ; (3)

where b� is a heteroskedasticity- and autocorrelation-consistent standard error, e.g.,
b�2 = q�1X

j=�q+1
(1� jj=qj)P�1

T�hX
t=R

�Lt+h�Lt+h�j; (4)

with truncation lag q = h � 1. The challenge of accounting for estimation uncertainty is
trickier and has been the subject of a sizable body of literature. Broadly speaking, there are

two strands of the literature, which correspond to two di¤erent asymptotic approximations

in the derivation of a test of equal predictive ability. The two approaches are exempli�ed by

West (1996) and Giacomini and White (2006).

2.2.1 West (1996)

The key insight of West (1996) is to acknowledge the dependence of (2) on b�t and propose a
test of equal predictive ability that is valid as both the in-sample size R and the out-of-sample

size P grow to in�nity. West (1996) considers a t-test of H0 : � = 0 in a modi�cation of

the regression in (2) where the dependent variable is a function of the population parameter

�� (interpretable as the probability limit of b�t as the size of the estimation sample grows to
in�nity):

�Lt+h (�
�) = �+ "t+h; t = R; :::; T � h: (5)

1For ease of notation we stack the parameters of the two models in b�t:
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The practical implication of this focus on population parameters is that one needs to take

into account that the test statistic depends on in-sample parameter estimates, which may

have an e¤ect on the estimator of the asymptotic variance to be used in the test. Formally,

West�s (1996) test statistic is

1

P

T�hX
t=R

�Lt+h

�b�t�b� ;

where b� is an asymptotically valid standard error that re�ects the possible contribution of
in-sample parameter estimation uncertainty. The main technical contribution of West (1996)

is to show how to construct b� for a fairly wide class of models and estimation procedures, as
well as point out special cases in which estimation uncertainty is asymptotically irrelevant

and b� is the same standard error (4) as in the Diebold and Mariano (1995) test statistic (for
example, this occurs in the case of MSFE comparisons of models estimated by OLS).

West�s (1996) test has two main "disadvantages". The �rst, which is merely an issue

of convenience of implementation, is that b� is not as easily computed as the corresponding
standard error in the Diebold and Mariano (1995) test, because in general it depends on the

estimators used by the two models and on the estimation scheme. The second disadvantage

is of a more fundamental nature, and has been discussed in a series of papers by Clark and

McCracken (2001, 2005) and McCracken (2007). The key limitation of West�s (1996) result

is that it is only applicable to comparisons between non-nested models and thus rules out

the empirically relevant comparison between a model and a nested benchmark such as an

autoregression or a random walk. The technical reason for this is that West�s (1996) result

requires the probability limit of b� to be positive as both R and P grow to in�nity, which may
be violated in the case of nested models. Clark and McCracken (2001, 2005) and McCracken

(2007) show that it is nonetheless possible to derive a valid test of equal predictive ability for

nested models within a more restrictive class of models and estimation procedures (i.e., linear

models estimated by OLS and direct multi-step forecasting). The asymptotic distribution

is however non-standard, so critical values for the t-test must be simulated in each speci�c

case.

2.2.2 Giacomini and White (2006)

Giacomini andWhite (2006) propose deriving predictive ability tests in a di¤erent asymptotic

environment with growing out-of-sample size P and �xed in-sample size R. Importantly, this

assumption rules out the use of the recursive scheme in the construction of the out-of-sample
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test, but allows for both �xed and the rolling schemes. The basic idea is to propose a test

of H0 : � = 0 in the regression

�Lt+h

�b�t� = �+ "t+h; t = R; :::; T � h; (6)

where the dependent variable �Lt+h
�b�t� is now a function of estimated - rather than pop-

ulation - parameters. This corresponds to taking a di¤erent "philosophical" view on what

the relevant object of interest of the forecasting exercise is2. In practice, the test statistic

considered by Giacomini and White (2006) is the same as the Diebold and Mariano (1995)

test statistic, and thus the key message is that Diebold and Mariano�s (1995) test is valid

regardless of whether the models are nested or non-nested, as long as the estimation window

does not grow with the sample size. The reason for the test being valid regardless whether

the models are nested or non-nested is that, in a context with non-vanishing estimation

uncertainty (due to the �nite estimation window), the estimator b�t do not converge to its
probability limit and thus the denominator b� of the Diebold and Mariano (1995) test cannot
converge to zero.

The asymptotic framework with non-vanishing estimation uncertainty allows Giacomini

and White (1996) to weaken many of the assumptions used by West (1996), Clark and

McCracken (2001, 2005) andMcCracken (2007), and as a result yields a test that is applicable

to a wide class of models and estimation procedure, including any linear or non-linear model

estimated by classical, Bayesian, semi-parametric or nonparametric procedures. The only

restriction to keep in mind is that the forecasts cannot be obtained by using the recursive

scheme (see Clark and McCracken (2009) for an example of a test of the Giacomini and

White (2006) null hypothesis that permits recursive estimation, applicable in the special

case of linear models estimated by OLS).

2.3 Pairwise (Conditional) Predictive Ability Testing

The central idea of conditional predictive ability testing (also in Giacomini and White, 2006)

is to ask whether one could use available information - above and beyond past average per-

formance - to predict which of the two forecasts will be more accurate in the future. Another

way to look at this is to argue that more could be learned about the forecasting performance

2From a technical point of view, the reason why things work is that the assumption of a �nite estimation

window means that �Lt+h
�b�t� can be viewed as a function of the �nite history of the predictor and

predictands, and as such it inherits their time series properties, which makes it easy to derive the test.
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of models by studying the time series properties of the sequence of loss di¤erences in its

entirety, rather than limiting oneself to asking whether it has mean zero. For example, one

could extend the regression (6) to

�Lt+h

�b�t� = �0Xt + "t+h; t = R; :::; T � h; (7)

where Xt contains elements from the information set at time t; such as a constant, lags of

�Lt and economic indicators that could help predict the relative performance of the models

under analysis. One could then test H0 : � = 0 by a Wald test:

W = P
�b��0 b��1 �b�� ; (8)

where, because of the �nite-estimation window asymptotic framework, b� is the standard

HAC estimator computed by any regression software. The test is also applicable to both

nested and non-nested models.

One useful feature of the extension to conditional predictive ability testing is that re-

jection of the null H0 : � = 0 implies that the future relative performance of the models is

predictable using current information, which suggests the following simple decision rule for

choosing at time T a forecasting model for time T +h: choose the second model if b�0XT > 0

and the �rst model otherwise, where b� is estimated from (7).

2.4 Multiple Predictive Ability Testing

It is often the case that a forecaster is interested in comparing the performance of several

models to that of a benchmark model, which can be viewed as a problem of multiple hy-

pothesis testing. Referring back to the notation in Section 2.1, suppose there are N models

and a benchmark denoted by 0, so that �L(i)t+h = L
(0)
t+h � L

(i)
t+h is the loss di¤erence between

the benchmark and model i. The null hypothesis of interest is that none of the N models

outperforms the benchmark, and the key econometric challenge is to propose procedures that

control the overall Type I error of the procedure, while taking into account the dependence

of the forecast losses on each other and on the in-sample parameter estimates. White (2000)

does so by proposing a "reality check" test of

H0 : max
i=1;:::;N

E
h
�L

(i)
t+h

i
� 0 against (9)

H1 : max
i=1;:::;N

E
h
�L

(i)
t+h

i
> 0;
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where the alternative states that there is at least one model outperforming the benchmark.

White (2000) uses the asymptotic framework of West (1996) to derive the asymptotic dis-

tribution of the test statistic, which is the (out-of-) sample analogue of (9). The asymptotic

distribution is the maximum of a Gaussian process and thus the p-values must be obtained

by simulation. White (2000) suggests a bootstrap procedure for obtaining p-values that

are valid under the assumption that at least one model is not nested in (and non-nesting)

the benchmark and that estimation uncertainty is asymptotically irrelevant as in the spe-

cial cases considered by West (2006) (e.g., MSFE comparison in linear models estimated by

OLS).

Hansen (2005) modi�es White�s (2000) procedure to obtain a test that is less sensitive

to the inclusion of poor-performing models and thus has higher power than White�s (2000)

test. Romano and Wolf (2005) suggest a further possible power improvement by adopting a

"step-wise" multiple testing approach.

While the approaches described above are useful for identifying the best performing model

relative to the benchmark, if there is one, they are silent about what to do in case the null

hypothesis is not rejected (which could mean that the benchmark is more accurate than all

the competing models or that it is as accurate as all or some of them). One may try to

take a further step and ask whether it is possible to eliminate the worst-performing models

and retain all the models that have equal performance, which is related to the notion of

constructing a "model con�dence set" (MCS), as described by Hansen, Lunde and Nason

(2011). The procedure consists of the following steps:

1. LetM be the set of all possible models. Test H0 : E
h
L
(i)
t+h � L

(j)
t+h

i
= 0 for all i; j 2M

using the statistic

T = max
i;j2M

ti;j; (10)

where ti;j is the Diebold and Mariano (1995) test statistic in (3).

2. If fail to reject, all models in M are equally accurate. If reject, eliminate the worst

model (that with the highest average loss) and repeat step 1 until no model is elimi-

nated.

As in the case of the tests described above, the p-value for the test in step 1 is ob-

tained by bootstrap methods as the test statistic (10) is not pivotal since it depends on

the cross-sectional correlation of the t0i;js: The bootstrap p-values are computed by con-
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sidering the bootstrap test statistic T (b) = maxi;j2M

����pP (b��(b)�b�)b��
���� for b = 1; :::; B; where

b�� = P
B

BX
b=1

�b��(b) � b��2 and computing p� = 1
B

BX
b=1

1fT (b)>Tg:

2.5 Open Issues in Forecast Evaluation

An important issue that has been largely ignored by the literature so far, at least from a

theoretical standpoint, is how to choose the sample split and/or rolling window size for the

out-of-sample evaluation exercise. The question is in part linked to which asymptotic ap-

proximation one considers. There is limited evidence based on Monte Carlo simulations that

shows that Giacomini and White�s (2006) approximation works best when the in-sample size

is small relatively to the out-of-sample size, as one would expect given the �nite-estimation

window assumption. Regarding West�s (1996) approximation, instead, no clear guidelines

seem to emerge from the simulations in the literature, except that it might not work very

well when the in-sample size is small. Note that a direct comparison between the two ap-

proximations is not possible, as they test di¤erent null hypotheses. This issue has attracted

a lot of attention and several new techniques have been proposed to help researchers reach

empirical conclusions that are robust to the choice of the rolling window size and/or the split

point, or where the latter are chosen optimally. Section 3.4 will review the recently proposed

techniques that address this issue.

Another important issue is that the methodologies previously discussed are applicable

only in stationary environments, which for example rules out unit roots or highly persistent

variables. Analyses of the properties of forecast tests in the presence of high persistence are

provided by Corradi, Swanson and Olivetti (2001) and Rossi (2005).

A more general question that has received no clear answer in the literature is if, why

and when out-of-sample testing is preferable to in-sample testing, particularly when the

null hypothesis is formulated in terms of (pseudo-) true parameters, as in (5). An argument

against out-of-sample testing is for example made by Inoue and Kilian (2004), who show that

out-of-sample tests may in fact have lower power than in-sample tests and not necessarily

guard against data-mining, as is generally believed. An argument in favour is indirectly

given by Clark and McCracken (2005), who show that out-of-sample tests may have an

advantage over in-sample tests in that they are more "robust" to changes in predictive

ability due to un-modeled structural change. Rossi and Sekhposyan (2011a) propose a new

methodology to explain the di¤erence between in-sample �t and out-of-sample forecasting
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performance. They propose to decompose models� forecasting ability into asymptotically

uncorrelated components that measure the contribution of instabilities, predictive content

and over-�tting. We will discuss these contributions more in detail in Section 3.5.

The last result suggests that the link between predictive ability testing and structural

change is worth exploring in greater depth, which is the subject of the research summarized

in the next section.

3 Methods for Forecast Evaluation in the Presence of

Instabilities

Stock and Watson (2003) and Rossi (2011) have discussed two main stylized facts existing

in the forecasting literature on macroeconomic variables. The �rst stylized fact is that the

predictive ability is unstable over time. For example, instabilities have been found when

forecasting GDP growth using the term spread for both the U.S. (Giacomini and Rossi,

2006, and Bordo and Haubrich, 2008) as well as other major developed countries (Schrimpf

and Wang, 2010, and Wheelock and Wohar, 2009). Instabilities have been found in a variety

of predictors for forecasting in�ation and output growth over time, as shown in Stock and

Watson (2007) and Rossi and Sekhposyan (2010).

More in detail, Stock and Watson (2003) assess the lack of stability using parameter

instability tests in Granger-causality type regressions. In-sample Granger-causality tests

assess the signi�cance of the proposed predictors in a regression of the dependent variable

(say yt+h) onto the lagged predictors (say, xt), where h is the forecast horizon. That is, the

Granger-causality test is a simple F-test on the parameter vector �h, where:

yt+h = �
0
hxt + 


0
hzt + "t;h; t = 1; :::; T (11)

and zt are other control variables (for example, lags of y: yt; yt�1; :::) and the total sample

size available to the researcher is T + h. Stock and Watson (2003) evaluate the stability of

�h in regression (11) by using Andrews�(1993) test for structural breaks, and reject stability

for most of the regressors. In addition, they evaluate the forecasting ability of predictors in

sub-samples and �nd that the existence of predictability in a sub-sample does not necessarily

imply existence of predictability in the other sub-samples.

A second stylized fact existing in the literature is that the existence of in-sample predic-

tive ability does not necessarily imply out-of-sample forecasting ability. That is, predictors
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that Granger-cause macroeconomic variables in the in-sample regression (11) do not neces-

sarily perform well in an out-of-sample forecasting framework. A well-known example is the

fact that, while exchange rate models �t well in-sample, their forecasting ability is poorer

than that of a random walk (Meese and Rogo¤, 1983). For other examples, see Swanson

and White (1995) in forecasting interest rates, Swanson (1998) for forecasting monetary

aggregates, Stock and Watson (2003) for forecasting output growth and in�ation using a

large dataset of predictors. That is, out-of-sample forecasting ability is harder to �nd than

in-sample predictive ability, and therefore it is a tougher metric to be used in evaluating the

performance of macroeconomic models.

How does one then assess predictive ability or estimate forecast models in the presence

of instabilities? Does the widespread evidence of instabilities in macroeconomic forecasting

models change our evaluation of whether it is possible to forecast macroeconomic variables?

In what follows, we will review several methodologies that can be used to answer these ques-

tions; for a more detailed discussion of several test statistics as well as estimation strategies

that have been proposed explicitly to address the presence of instabilities, see Rossi (2011).

In what follows, we will focus on a simpli�ed situation where researchers are interested

in predicting the h-steps ahead value of the dependent variable (say yt+h) using lagged

predictors (say, xt), where h is the forecast horizon. That is,

yt+h = �
0
hxt + "t;h; t = 1; :::; T: (12)

3.1 Granger-Causality Tests Robust To Instabilities

Traditional Granger-causality tests are invalid in the presence of instabilities. In fact, Rossi

(2005) showed that traditional Granger-causality tests may have no power in the presence

of instabilities. Rossi (2005) proposed a test that is robust to the presence of instabilities.

Rossi (2005) is interested in testing whether the variable xt has no predictive content for

yt in the situation where the parameter �t might be time-varying.
3 Her procedure is based

on testing jointly the signi�cance of the predictors and their stability over time. Among the

various forms of instabilities that she considers, we focus on the case in which �t may shift

from �1 to �2 6= �1 at some unknown point in time, � . That is, �t = �1�1 (t < �)+�2�1(t � �).
3Rossi (2005) also considers the general case of testing possibly nonlinear restrictions in models estimated

with Generalized Method of Moments (GMM). She also considers the case of tests on subsets of parameters,

that is, in the case of Granger-causality regressions, tests on whether xt Granger-causes yt in the model

yt+h = x
0
t�t + z

0
t
 + "t;h.
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The test is implemented as follows. Let b�1� and b�2� denote the OLS estimators before
and after the break:

b�1� =

�
1

�

��1P
t=1

xtx
0
t

��1�
1

�

��1P
t=1

xtyt+h

�
;

b�2� =

�
1

T � �
TP
t=�

xtx
0
t

��1�
1

T � �
TP
t=�

xtyt+h

�
:

The test builds on two components: �
T
b�1�+�1� �

T

� b�2� and b�1��b�2� . The �rst is simply the
full-sample estimate of the parameter, �

T
b�1�+�1� �

T

� b�2� = � 1
T

TP
t=1

xtx
0
t

��1�
1
T

TP
t=1

xtyt+h

��1
;

a test on whether this component is zero is able to detect situations in which the parameter

�t is constant and di¤erent from zero. However, if the regressor Granger-causes the depen-

dent variable in such a way that the parameter changes but the average of the estimates

equals zero (as in the example previously discussed), then the �rst component would not be

able to detect such situations. The second component is introduced to perform this task. It

is the di¤erence between the parameters estimated in the two sub-samples; a test on whether

this component is zero is able to detect situations in which the parameter changes. Rossi

(2005) proposes several test statistics, among which the following:

QLR�T = sup
�=[0:15T ];:::;[0:85T ]

��T (13)

Exp�W �
T =

1

T

[0:85T ]P
�=[0:15T ]

1

0:7
exp

��
1

2

�
��T

�
Mean�W �

T =
1

T

[0:85T ]P
�=[0:15T ]

1

0:7
��T

where��T �
� �b�1� � b�2��0 � �T b�1� + �1� �

T

� b�2��0 � bV �1
0@ �b�1� � b�2���

�
T
b�1� + �1� �

T

� b�2��
1A ;

bV =  �
T
S 0xx
bS�11 Sxx 0

0 T��
T
S 0xx
bS�12 Sxx

!
;

13



Sxx � 1

T

TP
t=1

xtx
0
t

bS1 =

�
1

�

�P
t=1

xtb"t+hb"t+hx0t�+ ��1P
j=1

�
1�

���� j� 1=3
�����
 
1

�

�P
t=j+1

xtb"t+hb"t+h�jx0t�j
!
; (14)

bS2 =

�
1

T � �
T��P
t=�+1

xt�1b"t+hb"t+hx0t� (15)

+
T��P
j=�+1

 
1�

����� j

(T � �)1=3

�����
! 

1

T � �
T��P
t=j+1

xtb"t+hb"t+h�jx0t�j
!
;

for b"t+h � yt+h � x0tb�. If there is no serial correlation in the data, only the �rst component
in (14) and (15) is relevant. Under the joint null hypothesis of no Granger-causality and

no time-variation in the parameters (�t = � = 0), QLR
�
T , Mean�W �

T and Exp�W �
T have

asymptotic distributions whose critical values depend on the number of predictors, p, and

are tabulated in Rossi�s (2005) Table B1. For example, the 5% critical values of the QLR�T ,

Mean �W �
T and Exp �W �

T tests are, respectively: (9.826, 3.134, 5.364) in the presence of

one regressor, and (14.225, 5.015, 8.743) in the presence of two regressors.

3.2 Forecast Comparisons Tests Robust To Instabilities

If researchers are interested in establishing which model forecasts the best in the presence

of instabilities, they could use Giacomini and Rossi�s (2010) Fluctuation test. To simplify

notation, let�Lt+h
�b�t�, de�ned in eq. (2), be denoted by�Lt+h. To test the null hypothesis

of equal performance at each point in time:

H0 : E (�Lt+h) = 0 for all t; (16)

they propose computing the sequence of statistics

Ft = b��1m�1=2
t+m=2�1X
j=t�m=2

�Lj; t = R + h+m=2; :::; T �m=2 + 1; (17)

where m(< R) is a user-de�ned "bandwidth", b�2 is a HAC estimator of the asymptotic

variance of the forecast losses, e.g.,

b�2 = eq�1X
j=�eq+1(1� jj=eqj)P�1

TX
t=R+h

�Lt+h�Lt+h�j; (18)

and eq is appropriately chosen (see e.g., Andrews, 1991 and Newey andWest, 1987). They rely
on an asymptotic approximation that assumes lim

T!1
m
P
= �: The null hypothesis is rejected
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at the 100�% signi�cance level against the two-sided alternative E (�Lt+h) 6= 0 for some t
when maxt jFtj > kGR� , where kGR� is the appropriate critical values, which depend on �. The

critical values depend on �, and are reported in their Table 1. For example, for values of �

equal to (.1, .2, .3, .4, .5, .6, .7, .8 and .9), the critical values are 3.393, 3.179, 3.012, 2.890,

2.779, 2.634, 2.560, 2.433, 2.248 respectively.4

The test statistic Ft in (17) is equivalent to Diebold and Mariano�s (1995) and Giaco-

mini and White�s (2006) (unconditional) test statistic, computed over rolling out-of-sample

windows of size m: Giacomini and Rossi (2010) show that their approach can be generalized

to allow for any other commonly used test for out-of-sample predictive ability comparisons

discussed in Section 2, as long as their asymptotic distribution is Normal. In particular, one

could use the test statistics proposed by West (1996) or by Clark and West (2007), which

are respectively applicable to non-nested and nested models.5 The adoption of West�s (1996)

framework involves replacing b� in (18) with an estimator of the asymptotic variance that
re�ects the contribution of estimation uncertainty (see Theorem 4.1 of West (1996)). For

the nested case, the use of the Clark and West (2007) test statistic in practice amounts to

replacing �Lt+h in (17) with Clark and West�s (2007) corrected version.

Also note that West�s (1996) approach allows the parameters to be estimated using a

recursive scheme, in addition to a rolling or �xed scheme. In that case, let
�
WOOS
t

	
denote

a sequence of West�s (1996) test statistics for h-steps ahead forecasts calculated over recursive

windows (with an initial window of size R) for t = R+ h+m=2; :::; T �m=2+ 1: Giacomini
and Rossi (2010) show that the null hypothesis of equal predictive ability is rejected when

maxt
��WOOS

t

�� > krec�

q
T�R
t

�
1 + 2 t�R

T�R
�
, where (�; krec� ) are (0:01; 1:143) ; (0:05; 0:948) and

(0:10; 0:850) :

Empirically, taking into account instabilities when assessing predictive ability is very im-

portant. For example, Rossi and Sekhposyan (2010) used the Fluctuation test to empirically

investigate whether the relative performance of competing models for forecasting U.S. indus-

trial production growth and consumer price in�ation has changed over time. Their predictors

include interest rates, measures of real activity (such as unemployment and GDP growth),

4They also derive critical values for one-sided tests.
5The fundamental di¤erence between these approaches and Giacomini and White (2006) is that they test

two di¤erent null hypotheses: the null hypothesis in West (1996) and Clark and West (2006, 2007) concerns

forecast losses that are evaluated at the population parameters, whereas in Giacomini and White (2006) the

losses depend on estimated in-sample parameters. This re�ects the di¤erent focus of the two approaches on

comparing forecasting models (West, 1996, and Clark and West, 2006, 2007) versus comparing forecasting

methods (Giacomini and White, 2006).
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stock prices, exchange rates and monetary aggregates. Their benchmark model is the autore-

gressive model. Using both fully revised and real-time data, they �nd sharp reversals in the

relative forecasting performance. They also estimate the time of the reversal in the relative

performance, which allows them to relate the changes in the relative predictive ability to

economic events that might have happened simultaneously. In particular, when forecasting

output growth, interest rates and the spread were useful predictors in the mid-1970s, but

their performance worsened at the beginning of the 1980s. Similar results hold for money

growth (M2), the index of supplier deliveries, and the index of leading indicators. When

forecasting in�ation, the empirical evidence in favor of predictive ability is weaker than that

of output growth, and the predictive ability of most variables breaks down around 1984,

which dates the beginning of the Great Moderation. Such predictors include employment

and unemployment measures, among others, thus implying that the predictive power of the

Phillips curve disappeared around the time of the Great Moderation.

3.3 Forecast Optimality Tests Robust To Instabilities

Rossi and Sekhposyan�s (2011b) proposed robust tests of forecast optimality that can be

used in case researchers are interested in assessing whether forecasts are rational. In fact,

traditional tests for forecast rationality are subject to the same issues as the other tests

previously discussed: they are potentially invalid in the presence of instabilities.

Consider the forecast optimality regression:

vt+h = g
0
t � �+ �t;h; for t = R; :::; T; (19)

where � is a (p� 1) parameter vector. The null hypothesis of interest is H0 : � = �0,

where typically �0 = 0: For example, in forecast rationality tests (Mincer and Zarnowitz,

1969), vt+h = yt+h, gt = [1; yt+hjt], � = [�1; �2]
0 ; and typically a researcher is interested in

testing whether �1 and �2 are jointly zero. For forecast unbiasedness, gt = 1; for forecast

encompassing gt is the forecast of the encompassed model, and for serial uncorrelation gt = vt.

To test forecast optimality, one typically uses the re-scaled Wald test:

WT = b�0 bV �1� b�; (20)

where bV� is a consistent estimate of the long run variance of the parameter vector obtained
following West and McCracken (1998).6

6West and McCracken (1998) have shown that it is necessary to correct eq. (20) for parameter estimation
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Rossi and Sekhposyan (2011b) propose the following procedure, inspired by Giacomini

and Rossi (2010). Let b�t be the parameter estimate in regression (19) computed over centered
rolling windows of size m (without loss of generality, we assume m to be an even number).

That is, consider estimating regression (20) using data from t�m=2 up to t+m=2� 1, for
t = m=2; :::; P �m=2+1. Also, let the Wald test in the corresponding regressions be de�ned
as:

Wt;m = b�0t bV �1�;t b�t; for t = m=2; :::; P �m=2 + 1, (21)

where bV�;t is a consistent estimator of the asymptotic variance of the parameter estimates in
the rolling windows obtained following West and McCracken (1998). Rossi and Sekhposyan

(2011b) refer toWt;m as the Fluctuation optimality test. The test rejects the null hypothesis

H0 : E (b�t) = 0 for all t = m=2; :::; P � m=2 + 1 if maxt Wt;m > kRS�;k, where k
RS
�;k are the

critical values at the 100�% signi�cance level. The critical values are reported in their Table

1 for various values of � = [m=P ] and the number of restrictions, p.7

3.4 The Choice of the Window Size

In the presence of breaks, it might be useful to use a rolling window. But which size of the

rolling window should be used? Similarly, recursive window forecasts require researchers to

split the sample between an in-sample and an out-of-sample portion. Again, which split-point

should be used? For simplicity, in this section we will focus on the choice of the window size,

although we note that similar issues and solutions are applicable to the choice of split-point.

The choice of the estimation window size has always been a concern for practitioners, and

they raise several concerns. The �rst concern is that the use of di¤erent window sizes may

lead to di¤erent empirical results in practice. In addition, arbitrary choices of window sizes

have consequences about how the sample is split into in-sample and out-of-sample portions.

Notwithstanding the choice of the window size is crucial, in the forecasting literature it is

common to only report empirical results for one window size.

Pesaran and Timmermann (2007) study the problem of determining the optimal window

size that guarantees the best forecasting performance, especially in the presence of breaks.

error in order to obtain test statistics that have good size properties in small samples, and proposed a general

variance estimator as well as adjustment procedures that take into account estimation uncertainty.
7Rossi and Sekhposyan (2011b) also note that a simple, two-sided t-ratio test on the s-th parameter, �(s),

can be obtained as b�(s)t bV �1=2
�(s);t

, where bV�(s);t is element in the s-th row and s-th column of bV�;t; then, reject
the null hypothesis H0 : E

�b�(s)t � = �(s)0 for all t = m=2; :::; P �m=2 + 1 at the 100�% signi�cance level if

maxt
���b�(s)t bV �1=2

�(s);t

��� > kGR� , where kGR� are the critical values provided by Giacomini and Rossi (2010a).
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They propose several methods in practice, among which several are available if the researcher

possesses an estimate of the break, in which case, using either only the post-break window

data to estimate the parameter or a combination of pre- and post-break data according to

weights that trade-o¤ bias against reduction in parameter estimation error, might improve

forecasting performance. A di¢ culty in the latter methods is the fact that, in practice, it

may be di¢ cult to precisely estimate the time and magnitude of the break. Thus, rather

than selecting a single window, they propose to combine forecasts based on several estimation

windows. For example, they propose an average ("Ave") forecast:

yAV E;ft+hjt = (T �R + 1)�1
tP

R=t�R
yft+hjt (R) (22)

where R is the size of the rolling window, R is the researcher�s minimum number of obser-

vations to be used for estimation, and the forecast for the target variable h-steps into the

future made at time t based on data from the window size R (that is data from time t�R+1
to t) is denoted by yft+hjt (R).

An alternative approach is suggested by Inoue and Rossi (2010). While Pesaran and

Timmermann�s (2007), Inoue and Rossi (2010) are interested in assessing the robustness of

conclusions of predictive ability tests to the choice of the estimation window size. Inoue

and Rossi (2010) argue that the common practice of reporting empirical results for only

one window size raises two types of concerns. First, it might be possible that satisfactory

results (or lack thereof) were obtained simply by chance, and are not robust to other window

sizes. Second, it might be possible that the data were used more than once for the purpose

of selecting the best forecasting model and thus the empirical results were the result of

data snooping over many di¤erent window sizes and the search process was not ultimately

taken into account when reporting the empirical results. Inoue and Rossi (2010) propose new

methodologies for comparing the out-of-sample forecasting performance of competing models

that are robust to the choice of the estimation and evaluation window size by evaluating

the models�relative forecasting performance for a variety of estimation window sizes, and

then taking summary statistics. Their methodology can be applied to most of the tests

of predictive ability that have been proposed in the literature, such as those discussed in

Section 2.

Inoue and Rossi�s (2010) proposed methodology is as follows. Let �LT (R) denote the

test of equal predictive ability implemented using forecasts based either on a rolling window

of size R or recursive/split estimation starting at observation R. For example, for the case
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of the Diebold and Mariano�s (1995) and West�s (2006) test, �LT (R) is de�ned as in eq.

(3). Similarly, let �L"T (R) denote the Clark and McCracken�s (2001) ENCNEW test for

nested models comparison based either on rolling window estimation with window size R or

recursive/split window estimation starting at observation R. Finally, letWT (R) denote tests

for forecast optimality analyzed by West and McCracken (1998), including tests of forecast

encompassing (Clements and Hendry, 1993, Harvey, Leybourne and Newbold, 1998), tests

for forecast rationality (Mincer and Zarnowitz, 1969) and tests of forecast uncorrelatedness

(Granger and Newbold, 1986, and Diebold and Lopez, 1996) based on forecast errors obtained

either by estimation on a rolling window of size R or recursive/split estimation starting at

observation R.

They suggest the following statistics:

RT = sup
R2fR;:::Rg

j�LT (R) j; and AT =
1

R�R + 1

RX
R=R

j�LT (R)j , (23)

R"
T = sup

R2fR;:::Rg
�L"T (R) and A"T =

1

R�R + 1

RX
R=R

�L"T (R) , (24)

RW
T = sup

R2fR;:::Rg
WT (R) ; and AWT =

1

R�R + 1

RX
R=R

WT (R) , (25)

whereR is the smallest window size considered by the researcher, R is the largest window size,

and b
R is a consistent estimate of the long run variance matrix.8 Inoue and Rossi�s (2010)
obtain asymptotic approximations to eqs. (23), (24) and (25) by letting the size of the window

R be asymptotically a �xed fraction of the total sample size: � = lim
T!1

(R=T ) 2 (0; 1) : The
null hypothesis of equal predictive ability or forecast optimality at each window size for the

RT test is rejected when the test statistics are larger than the critical values reported in

the tables in Inoue and Rossi (2010). For example, at the 5% signi�cance level and for

R = [0:15T ] and R = [0:85T ] ; the critical values for the RT and AT test are, respectively,
2.7231 and 1.7292. Inoue and Rossi (2010) also consider cases where the window size is �xed �

we refer interested readers to their paper for more details. Hansen and Timmermann (2011)

propose a similar approach; the di¤erence is that focus on nested models�comparisons based

on recursive window estimation procedure. The advantage of their method is to provide

analytic power calculations for the test statistic under very general assumptions. Unlike

8See West (1996) for consistent variance estimates in eq. (23), Clark and McCracken (2001) for eq. (24)

and West and McCracken (1998) for eq. (25).
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Inoue and Rossi (2011), however, they do not consider rolling window estimation, nor the

e¤ects of time-varying predictive ability on the power of the test.

3.5 Empirical Evidence on Forecasting in the Presence of Insta-

bilities

In an empirical analysis focusing on the large dataset of macroeconomic predictors used

in Stock and Watson (2003), Rossi (2011) �nds that the Granger-causality test robust to

instability proposed by Rossi (2005) is capable to overturn existing stylized facts about

macroeconomic predictability and identi�es more empirical evidence in favor of macroeco-

nomic predictability, due to the fact that, in several cases, predictability only appears in

sub-samples of the data. She also �nds similar results when evaluating the out-of-sample

forecasting ability of macroeconomic predictors: using tests of predictive ability that are

robust to instabilities (such as Giacomini and Rossi, 2010) is key to uncover more predic-

tive ability than previously found. On the other hand, tests of forecast rationality that are

robust to instability (such as Rossi and Sekhposyan 2011b) �nd instead more evidence that

typical macroeconomic predictors of in�ation and output growth lead to forecasts that are

not optimal.

Finally, in the presence of instabilities, as discussed in Inoue and Rossi (2010), traditional

tests may encounter two problems due to the fact that they are performed conditional on

a given estimation window: they might either �nd spurious predictability (if the researcher

had performed data-mining over several window sizes) or may �nd too little predictive ability

(if the window chosen for estimation was not the optimal one given the instability in the

data). Inoue and Rossi (2010) and Hansen and Timmermann (2010) propose methods to

assess forecasting ability in a way that is robust to the choice of the estimation window size.

Rossi (2011) also notes that there are several estimation procedures that have been pro-

posed to improve models�estimation in the presence of instabilities. One should note that,

as shown in Elliott and Muller (2007), it is very di¢ cult to estimate break dates in the

data, which complicates estimation in the presence of instabilities; in addition, Pesaran and

Timmermann (2002) have shown that, unlike what one might suspect, it is not necessarily

optimal to use only observations after a break to forecast. Estimation methods that per-

form well in forecasting are therefore a bit more sophisticated than models in sub-samples

estimated according to possible break-dates. For example, Pesaran and Timmermann (2002,

2007) propose to adapt the estimation window to the latest break in a more sophisticated
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manner; Pesaran, Pettenuzzo and Timmermann (2006) and Koop and Potter (2007) propose

time-varying parameter models where the size and duration of the process is modeled ex-

plicitly, and Clemens and Hendry (1996) propose intercept corrections. Alternative methods

include forecast combinations (Timmermann, 2009) and Bayesian model averaging (Wright

2008, 2009). In her empirical analysis on the large dataset of macroeconomic predictors for

in�ation and output growth, Rossi (2011) �nds that, among the estimation and forecast-

ing methodologies robust to instabilities discussed above, forecast combinations with equal

weights are the best.

Should one rely on in-sample measures of �t or out-of-sample measures of forecast per-

formance when evaluating models? The short answer is that the two provide very di¤erent

assessments of models�validity. Clark and McCracken (2005) show that out-of-sample fore-

casting procedures have more power in �nding predictive ability than traditional in-sample

Granger-causality tests in the presence of instabilities since they re-estimate the models�

parameters over time. On the other hand, Inoue and Kilian (2005) argue that in-sample

tests are based on a larger sample size than out-of-sample forecast tests, and thus may be

better when designed appropriately. In fact, Clark and McCracken (2005) also show that

the Granger-causality tests designed to be robust to instabilities (Rossi, 2005) performs even

better. However, instabilities are only one of the sources of the di¤erence between in-sample

�t and out-of-sample forecasting performance. Giacomini and Rossi (2009) show that the

di¤erence depends on parameter instabilities, instabilities in other aspects of the forecast-

ing model, as well as estimation uncertainty (including over-�tting). They also propose a

"Forecast Breakdown" test to determine whether, empirically, models�in-sample �t di¤ers

from out-of-sample forecasting ability. How does one determine empirically why in-sample

�t di¤ers from out-of-sample forecasting ability? Rossi and Sekhposyan (2011a) provide a

methodology to decompose the models�forecasting ability into asymptotically uncorrelated

components that measure the contribution of instabilities, predictive content and over-�t in

explaining the di¤erences between in-sample �t and out-of-sample forecasting performance.

Using their method, one can uncover what is the source of the di¤erence between the two.

In an empirical analysis on a large dataset of macroeconomic predictors, Rossi (2011) �nds

that most predictors for output growth and in�ation experienced a forecast breakdown based

on Giacomini and Rossi�s (2009) test. She investigates the reasons for the breakdown using

Rossi and Sekhposyan�s (2011a) decomposition, and �nds that, when forecasting in�ation,

instabilities are a major determinant when using interest rates as predictors, whereas when

using real measures of activity (such as unemployment) not only there are instabilities but
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the predictive content is misleading (that is, out-of-sample forecasting ability goes in the op-

posite direction relative to in-sample �t). When forecasting output growth, over�tting drives

a wedge between in-sample and out-of-sample measures of performance even for predictors

that have signi�cant predictive content.
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Part II. Special Empirical Issues in Forecasting in
Macroeconomics

In the second part of the chapter we will focus on special issues that arise in practice

when forecasting with macroeconomic data. Given the space constraints we will focus only

on four issues that are especially important in practice, in particular: forecasting real activity

with leading indicators, forecasting in�ation, forecasting with real-time data, and including

economic theory in forecasting.

4 Forecasting Real Economic Activity with Leading

Indicators

An important goal of forecasting is to identify and evaluate leading indicators of real economic

activity. Typically, the target variable for the leading indicator is either Gross Domestic

Product (GDP) or industrial production or a composite index. For example, Burns and

Mitchell de�ne business cycles as co-movements, happening at the same time, in a large

number of economic variables, which �uctuate from expansions and recessions and whose

duration can last between 1 to 8 years (see Stock and Watson, 1999a). Since typically most

measures of economic activity are highly correlated with GDP, one can use the latter as

the measure of the business cycle, or an index (weighted average of several real economic

variables) summarizing the joint co-movements among the real variables. An example of

the latter is the Stock and Watson (1989) coincident index of economic activity based on

industrial production, real disposable income, hours and sales.

The objective of the leading indicators literature is to predict the future values of such

target variables, and successful leading indicators either: (i) successfully predict turning

points while at the same time maintaining good predictive power across the various stages

of the business cycle; for example, a good leading indicator should systematically anticipate

the target variable with a stable lead time and be capable of predicting peaks and troughs

with su¢ cient lead times; (ii) are economically and statistically signi�cant predictors; for

example, one would expect that good leading indicators have signi�cant marginal predictive

content and Granger-cause the target variable. In order for a leading indicator to have the

aforementioned properties, it is often necessary to transform (or �lter) the leading indicator

to remove high frequency �uctuations and very long-run components that do not contain

useful information on the business cycle. Typically, �ltering the data is done by using Baxter
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and King�s (1999) bandpass �lter, which allows research to focus on the frequencies of interest

(see Stock and Watson, 1999a); note that Hodrick-Prescott �lters, while removing very long

frequencies, do keep very high frequency movements and therefore are not ideal.

Widely used leading indicators include model-free composite indexes as well as model-

based indexes. The former apply statistical methods such as detrending, seasonal adjustment

and removal of outliers to the candidate leading indicator series. An example is the com-

posite coincident index (CCI) by the Conference Board. A major problem of model-free

composite indexes is that it is not possible to construct measures of uncertainty around

them, since they are not estimated models. Model-based leading indicators instead rely on

either dynamic factor models or Markov-switching models to estimate the index, and the

estimation procedure does provide a measure of uncertainty around the point forecast. The

di¤erence between the two is that the underlying unobservable state of the economy is mod-

eled as a continuous variable in the former and as a discrete variable in the latter. Examples

of the former include the dynamic factor models of Geweke (1977), Sargent and Sims (1977),

Stock and Watson (1991, 1993) and Forni, Hallin, Lippi and Reichlin (2000); examples of the

latter include Hamilton (1989), Diebold and Rudebusch (1989), Chauvet (1998) and Kim

and Nelson (1998), among others. For a detailed technical description of these models, see

Marcellino (2006). It is also possible to model directly the state of the business cycle (that

is, the expansions/recessions) using probit or logit models, as in Stock and Watson (1991)

or Estrella and Mishkin (1998), for example.

Marcellino (2006) provides an extensive empirical analysis of the success of leading indi-

cators in practice as well as an excellent overview of the theoretical literature. He notes that

most CCI indicators behave similarly for the U.S., and their peaks and throughs coincide

with the recession dates identi�ed by the NBER.

To evaluate the success of a leading indicator, it is common practice to compare its out-

of-sample predictions with the realized values of the target variable, either the business cycle

indicator (expansion/recession) or the state of the business cycle. In the latter case, the

tests for forecast comparisons listed in Section 2 can be used; in the former case, one often

constructs probability scores. For example, Diebold and Rudebusch (1989) have proposed

using the quadratic probability score:

QPS =
2

P

PX
t=R+1

�
Pt+hjt �Rt+h

�
;

whereRt+h is a binary indicator indicating whether the economy is in a recession or expansion

at time t+ h, and Pt+hjt is the probability of recession/expansion at time t+ h based on the
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leading indicator using information up to time t. The lower the quadratic probability score,

the better the forecast; a value close to zero indicates perfect forecasts.

Marcellino (2006) compares the success of several leading indicators at the one and six

months ahead forecast horizon in an out-of-sample forecast exercise over the period 1989 to

2003, which includes two recessions.

Stock andWatson (1999a) examine comovements across many series and real GDP, which

they think of as a proxy for the overall business cycle. They �nd large correlations between

several variables and real GDP growth at a variety of leads and lags. Variables that Granger-

cause output can be thought of as leading indicators for the business cycle, although the

predictive ability of several such indicators is unstable over time, according to parameter

stability tests in the Granger-causality regressions. For example, housing starts and new

orders lead output growth.

Rossi and Sekhposyan (2011) evaluate various economic models�relative performance in

forecasting future US output growth. They show that the models�relative performance has,

in fact, changed dramatically over time, both for revised and real-time data. In addition,

they �nd that most predictors for output growth lost their predictive ability in the mid-1970s,

and became essentially useless in the last two decades.

More recent developments focus on developing better methods to handle data irregu-

larities and improve nowcasts of macroeconomic variables in real time. Nowcasts are the

current period forecasts of unobserved macroeconomic variables which will be revealed or

revised subsequently. Giannone, Reichlin and Small (2008) develop a formal methodology to

evaluate the information content of intra-monthly data releases for nowcasts of GDP growth.

They show that their method can handle large data sets with staggered data-release dates

and successfully tracks the information in real time.

5 Forecasting In�ation

In a classic paper, Stock and Watson (1999b) investigated one-year ahead forecasts of U.S.

in�ation. They focused on predicting in�ation using the unemployment rate, according to

the Phillips curve. In a sample of monthly data from 1959 to 1997, they found that the

latter produces more accurate forecasts than other macroeconomic variables, including com-

modity prices and monetary aggregates. They also found statistical evidence of instabilities

in the parameters of the Phillips curve. In addition, they show that, by including index

measures of real activity, it is possible to improve in�ation forecasts beyond those based on
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unemployment.

Rossi and Sekhposyan (2011) evaluate various economic models�relative performance in

forecasting in�ation by taking into account the possibility that the models�relative perfor-

mance can be varying over time. They show that fewer predictors are signi�cant for fore-

casting in�ation than forecasting output growth, and their predictive ability signi�cantly

worsened around the time of the Great Moderation.

Faust and Wright (2011) investigate subjective forecasts, which empirically appear to

have an advantage over traditional model-based forecasts. They attempt to incorporate

subjective forecast�s information into model-based forecasts. They argue that, by exploiting

boundary values provided by subjective forecasts (e.g. where in�ation will be in the medium

and long run), it might be possible to improve model-based forecasts. However, they �nd

that, given good boundary values, models cannot improve much on trivial paths between

the boundaries and, overall, perform equally well.

6 Forecasting with Real-Time Data

When conducting a forecasting exercise, typically researchers utilize data that they have

collected at the time of the analysis for the macroeconomic variables of interest from the

beginning of the sample up to the most recent data available. Then, using these data,

they mimic what a forecaster would have done in the past to obtain a series of pseudo

out-of-sample forecasts over time. However, these data are not necessarily the same as the

data that were available at the time forecasters were actually producing a forecast. In fact,

data are constantly subject to data revisions, changes, updates, which not only change the

contemporaneous value of the variables but also their past values. To avoid this problem,

Croushore and Stark (2001, 2003) introduced a database (the �Real-Time Data Set for

Macroeconomists�) that is available for free at the Federal Reserve Bank of Philadelphia.

The database consists in a series of datasets of macroeconomic variables collected at each

point in time (vintage); at each time, the dataset contains data of macroeconomic variables

as they existed at that point in time, starting from the �rst datapoint up to the time of

collection. Each dataset is a snapshot of the data that a forecaster would have been able to

observe and use at each point in time. Using real-time data e¤ectively allows to evaluate

the actual forecasting ability of models or predictors.

Using real-time data is important in practice. Orphanides (2001) has shown that im-

plications of macroeconomic models for studying the e¤ects of monetary policy in-sample
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might change if one uses real-time as opposed to revised data. Similarly, the empirical results

of forecasting exercises might di¤er depending on whether the researcher uses real-time as

opposed to revised data. In fact, Orphanides and Van Norden (2005) show that, although

ex-post measures of the output gap are useful for predicting in�ation, in real time the pre-

dictive content disappears. Edge, Laubach and Williams (2007) also �nd the same result

when forecasting long-run productivity growth. Similarly, Faust, Rogers and Wright (2003)

show that exchange rates are much more di¢ cult to forecast using real-time data. Swanson

(1996) �nds that Granger causality test results change depending on whether one uses the

�rst release of the data or the latest available data. Finally, Amato and Swanson (2001)

show that money supply has predictive content for output only when using fully revised

data rather than real-time data.

There are three main reasons why forecasts may be a¤ected by revisions (Croushore,

2006). First, the data are di¤erent: real time databases provide vintages of data; thus, the

data to be forecasted are di¤erent. In contrast, typical forecasting exercises are implemented

and evaluated using the last revised data available at the time the data are collected. Sec-

ondly, the estimated coe¢ cients change. In fact, the forecasting exercise can be implemented

by either using the data available in the latest vintage of data (that is, what the forecaster

would have had available at that point in time) or by using for each time the data that

were immediately released at that time. Again, this is di¤erent from estimating coe¢ cients

using data that are available at the time the data are collected (fully revised data). Koenig,

Dolmas and Piger (2003) �nd that it is best to use the �rst release of the data in forecasting

rather than real-time data. Third, the model used for forecasting may be di¤erent as well

(e.g., the number of lags estimated using real-time data might di¤er from that estimated in

fully revised data). See Croushore (2006) for more details.

Finally, the fact that data are revised might be exploited to improve forecasts as well.

For example, one might optimally take into account data revisions by using a Kalman �lter

or a state-space model. See Howrey (1978) for how to do so in practice.

7 Economic Theory and Forecasting

Can economic theory help us produce better forecasts? This is a fundamental question that

has received little attention in the literature. In fact, a general picture that emerges from the

recent literature on forecasting methodology is the almost exclusive focus on "a-theoretical"

econometric models. This may be partly due to the fact that some of these methods have
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proven to be quite successful, in particular those that provide a way to extract the information

contained in large datasets while at the same time controlling the dimensionality of the

problem, such as factor models (Stock and Watson, 2002, Forni, Hallin, Lippi, and Reichlin,

2000), Bayesian VARs (BVARs, e.g., Litterman, 1986; Giannone, Lenza, and Primiceri, 2010)

and forecast combination methods such as Bayesian model averaging (Raftery, Madigan, and

Hoeting, 1997; Aiol�, Capistrán, and Timmermann, 2010) and bagging (Inoue and Kilian,

2008). On the other hand, there has been some call in the literature (particularly from

researchers at central banks and policy institutions) for forecasts that are based on models

that can "tell a story" (Edge, Kiley and Laforte, 2008). As a response, a small literature has

investigated the forecasting performance of the new generation of dynamic stochastic general

equilibrium (DSGE) models that are large scale theoretical models built on microfoundations

with optimizing agents (e.g., Smets and Wouters (2003). See, e.g., Adolfson, Linde and

Villani (2007), Wang (2009), Lees, Matheson and Smith (2010) and Edge, Kiley and Laforte

(2010). The evidence from this literature is however still limited and the conclusions should

be taken with caution as they are typically based on short evaluation samples that moreover

do not include the most recent periods of recession. A more thorough evaluation of the

forecasting performance of DSGE models is clearly needed.

In particular, Gurkaynak and Edge (2010) empirically assess the forecasting performance

of the Smets and Wouters DSGE model. They explore how this model would have fore-

casted, from 1 to 8 quarters ahead, movements in in�ation, output growth, and interest

rates between 1997 and 2006 and evaluate how good forecasts based on DSGE models are

using real-time data. They �nd that their forecasts are not worse than those based on sev-

eral competing alternatives, including o¢ cial forecasts such as the Greenbook and Blue Chip

Consensus forecasts. Greenbook forecasts are judgemental forecasts produced by the Board

of Governors of the Federal Reserve System; they are produced before each FOMC meeting,

approximately eight times a year, and are made available to the public with a 5-year delay.

Importantly, Greenbook forecasts are produced conditional on expected paths for �nancial

variables such as the policy interest rate. The Blue Chip Consensus forecasts are forecasts

of several important macroeconomic variables (such as output growth, in�ation and inter-

est rates) made monthly by a sample of approximately 50 banks and consulting �rms; the

average forecast across the sample is called the Consensus forecast. However, their absolute

performance is very poor, especially during the Great Moderation period, since there was

basically nothing to be forecasted. Similarly, Edge, Kiley and Laforte (2010) compared the

forecasts from the Federal Reserve Board�s DSGE model with alternative forecasts based on
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time series models as well as Greenbook forecasts.

A further branch of the literature has looked for a middle ground and proposed "hybrid"

approaches. One example in the context of model estimation is the use of theoretical models

to construct priors for the parameters of econometric models (An and Schorfheide, 2007;

Schorfheide, 2000), or the idea of constructing an optimal combination of the theoretical

and econometric models (Del Negro and Schorfheide, 2004).

We will next discuss two di¤erent hybrid approaches applied to the speci�c case of out-

of-sample forecasting.

7.1 Carriero and Giacomini (2010)

The idea of optimally combining the theoretical and the econometric model can be easily

extended to the context of out-of-sample forecasting, as shown by Carriero and Giacomini

(2010). The basic idea is to �rst acknowledge that the theoretical model can often be viewed

as an econometric model with theory-based parameter restrictions. This is the case of the

DSGE models considered in the literature mentioned above, since they are linearized DSGE

models that can therefore be written as vector ARMA models subject to cross-equation

restrictions implied by theory. The problem is therefore that of combining two forecasts

in a non-standard framework, in which there is only one model but the forecaster has the

option of either imposing the parameter restrictions implied by the theoretical model or of

forecasting with the unrestricted model. The forecast combination problem is non-standard

because the combination is between forecasts based on the same model but that use di¤erent

estimators, which may yield perfectly correlated forecasts in large samples. This problem

can be overcome by adopting the asymptotic framework of Giacomini and White (2006),

where the estimation uncertainty is non-vanishing.

Carriero and Giacomini (2010) propose estimating the optimal combination weight out-of-

sample and constructing an out-of-sample encompassing test. Let the forecast combination

be f �t = f
R
t + (1� �)(fUt � fRt ); and de�ne the optimal weight �� as the one that minimizes

a general expected out-of-sample loss

�� = argmin
�2R

E

"
1

P

T�hX
t=R

L (yt+h; f
�
t )

#
(26)

= argmin
�2R

E [QP (�)] ;
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which can be estimated by

b� = argmin
�2R

1

P

T�hX
t=R

L (yt+h; f
�
t ) (27)

= argmin
�2R

QP (�) :

Under suitable assumptions, Carriero and Giacomini (2010) show that a test of the

"usefulness" of the parameter restrictions for out-of-sample forecasting can be obtained by

�rst constructing

tU =

p
n
�b�� 1�b� and (28)

tR =

p
nb�b� ;

where b� is given by
b� =

pbH�1b
 bH�1; (29)bH = r��Qn

�b�� ;
b
 =

p�1X
j=�p+1

�
1� jj

p
j
�
n�1

T�hX
t=R+j

st

�b�� st�j �b�� ;
st

�b�� = r�L
�
yt+h; f

R
t + (1� b�)(fUt � fRt )� ;

where p is a bandwidth that increases with the sample size (Newey and West, 1987). Then

the hypotheses HU
0 : �� = 1 (the unrestricted forecast is useless) and HR

0 : �� = 0 (the

restricted forecast is useless) are rejected at a signi�cance level � respectively when
��tU �� >

c�=2 and
��tR�� > c�=2; with c�=2 indicating the 1 � �=2 quantile of a N(0; 1) distribution. If

both hypotheses are rejected, the estimated weight b� yields the forecast combination that
optimally exploits the theoretical restrictions, given the user-de�ned loss function.

Note that the same test can be used to combine forecasts based on any two competing

estimators, and it is not necessary that the forecast fUt be based on the unrestricted models

(in other words, fUt could be a forecast based on any other estimator, e.g., a-theoretical

restrictions such as a BVAR or a random walk).

7.2 Giacomini and Ragusa (2011)

The approach discussed in the previous section requires one being able to construct forecasts

based on the theoretical model. A model that fully speci�es a likelihood for all the variables
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of interest (e.g., in the multivariate case) is not however always available, and there might

be a concern that a full-�edged DSGE is misspeci�ed. One may for example be interested in

asking whether the restrictions embedded in, say, a Euler equation are useful for forecasting,

which is a di¢ cult question to answer as the Euler equation does not provide a conditional

likelihood that can be used for forecasting.

Giacomini and Ragusa (2011) propose adopting a hybrid approach to forecasting that

starts from a forecast based on the econometric model (e.g., a BVAR or a factor model) and

modi�es it in a way that results in a forecast that satis�es theoretical restrictions written in

the form of nonlinear moment conditions, such as, e.g., Euler equations or moment conditions

implied by Taylor rules.

This is obtained by projection methods as follows. Suppose the theory-based moment

restrictions for the vector yt+h are

Et[g(yt+h; �0)] = 0; (30)

where the subscript t indicates conditioning on the information set at time t and �0 is

assumed to be known, calibrated, or estimated on a di¤erent data set than the one used for

forecasting (note that the moment conditions could possibly only involve a subset of yt+h):

One proceeds as follows:

1. Produce a sequence of h-step ahead density forecasts from an econometric model,

ft(yt+h) for t = R; :::; T � h:

2. Project each ft(yt+h) onto the space of distributions that satisfy the moment condition

Et[g(yt+h; �0)] = 0. This yields a new density eft(yt+h) given by:
eft(yt+h) = ft(yt+h) exp f�t + �0tg(yt+h; �0)g : (31)

The new density by construction satis�es the moment condition (30).

3. For each t; estimate �t and �t by (numerically) solving:

�t = min
�

Z
ft(x) exp f�0g(x; �0)g dx (32)

�t = log

�Z
ft(x) exp f�0tg(x; �0)g dx

��1
:

The new forecast eft(yt+h) can be interpreted as the density which, out of all the densities
that satisfy the moment condition, is the closest to the initial density ft(yt+h) according
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to a Kullback-Leibler measure of divergence. The paper shows that the theory-coherent

density forecast eft(yt+h) is weakly more accurate than the initial, a-theoretical forecast,
when accuracy is measured by a logarithmic scoring rule, provided the moment restrictions

are true at all time periods.

The method is an alternative to forecasting with full-�edged DSGE models and can be

used to investigate the role of theory in forecasting in a variety of empirical applications.

Because of the possibility of accommodating non-linearity in the moment conditions (a task

that may be di¢ cult to accomplish in a likelihood-based context) the method can also be

used to ask whether incorporating the nonlinearity suggested by theory into forecasts can

lead to improvements in accuracy in practice.

8 Conclusions

This chapter provides an overview of forecast methodologies and empirical results that are

useful for macroeconomists and practitioners interested in forecasting using macroeconomic

databases. A more detailed exposition of these techniques as well as other available tech-

niques that we did not include due to space constraints is provided in Granger, Elliott and

Timmermann (2006) and Elliott and Timmermann (2011).

32



References

[1] Amato, J.D. and N.R. Swanson (2001), "The Real Time Predictive Content of Money

for Output," Journal of Monetary Economics 48, 3-24.

[2] An, S. and F. Schorfheide (2007): �Bayesian analysis of DSGE models,�Econometric

Reviews, 26, 113�172.

[3] Andrews, D.W. (1993), �Tests for Parameter Instability and Structural Change With

Unknown Change Point,�Econometrica 61(4), 821-856.

[4] Adolfson, M., J. Linde, and M. Villani (2007), �Forecasting performance of an open

economy DSGE model�, Econometric Reviews, 26, 289-328.

[5] Aiol�, M., C. Capistrán and A. Timmermann (2010): �Forecast Combinations,�CRE-

ATES Research Paper No. 2010-21.

[6] Amisano, G. and R. Giacomini (2007), �Comparing density forecasts via weighted

likelihood ratio tests�, Journal of Business and Economic Statistics, 25, 177-190.

[7] Andrews, D.W.K. (1991), �Heteroskedasticity and Autocorrelation Consistent Covari-

ance Matrix Estimation�, Econometrica, 59, 817-858.

[8] Baxter, M. and R. King (1999), �Measuring the Business Cycle: Approximate Band-

Pass �lters for Economic Time Series�, Review of Economics and Statistics.

[9] Bordo, M.D. and J.G. Haubrich (2008), �The Yield Curve as a Predictor of Growth:

Long-Run Evidence, 1875-1997,�Review of Economics and Statistics 90(1), 182-185.

[10] Burns, A.F. and W.C. Mitchell (1946), Measuring Business Cycles, NBER.

[11] Carriero, A. and R. Giacomini (2011): �How useful are no-arbitrage restrictions for

forecasting the term structure of interest rates?�, Journal of Econometrics, 164, 21-34.

[12] Chauvet, M. (1998), "An Econometric Characterization of Business Cycle Dynamics

with Factor Structure and Regime Switching", International Economic Review 39(4),

969-996.

[13] Clark, T. and M. McCracken (2001), �Tests of Equal Forecast Accuracy and Encom-

passing for Nested Models�, Journal of Econometrics, 105(1), 85-110.

33



[14] Clark, T.E. and M.W. McCracken (2005), �The Power of Tests of Predictive Ability

in the Presence of Structural Breaks,�Journal of Econometrics 124, 1-31.

[15] Clark, T. and M. McCracken (2009), �Nested forecast model comparisons: a new

approach to testing equal accuracy�, mimeo.

[16] Clark, T.E. and K.D. West (2007), �Approximately Normal Tests for Equal Predictive

Accuracy in Nested Models,�Journal of Econometrics 138, 291-311.

[17] Clements, M.P. and D.F. Hendry (1993), �On the Limitations of Comparing Mean

Square Forecast Errors,�Journal of Forecasting 12, 617-637.

[18] Clements, M.P. and D.F. Hendry (1996), �Intercept Corrections and Structural

Change,�Journal of Applied Econometrics 11, 475-494.

[19] Corradi, V., N. Swanson and C. Olivetti (2001), �Predictive Ability with Cointegrated

Variables�, Journal of Econometrics 104(2), 315-358.

[20] Croushore, D. and T. Stark (2001), "A Real-Time Data Set for Macroeconomists."

Journal of Econometrics 105, 111-130.

[21] Croushore, D. and T. Stark (2003). "A Real-Time Data Set for Macroeconomists: Does

the Data Vintage Matter?", Review of Economics and Statistics 85, 605-617.

[22] Croushore, D. (2006), �Forecasting with Real-Time Macroeconomic Data�, in: G. El-

liott, C.W.J. Granger and A. Timmermann (eds.), Handbook of Economic Forecasting,

Elsevier, Amsterdam: North-Holland.

[23] Del Negro, M. and F. Schorfheide (2004): �Priors from general equilibrium models for

VARs,�International Economic Review, 643�673.

[24] Diebold, F. X. and J. Lopez (1996), �Forecast Evaluation and Combination�in G.S.

Maddala and C.R. Rao (eds.), Handbook of Statistics, Amsterdam: North-Holland,

241-268.

[25] Diebold, F. X. and R. S. Mariano (1995), �Comparing Predictive Accuracy�, Journal

of Business and Economic Statistics, 13, 253-263.

[26] Diebold, F. X. and G. D. Rudebusch (1989), �Scoring the Leading Indicators�, The

Journal of Business 62(3), 369-391.

34



[27] Diebold, F. X. (2007), Elements of forecasting (Fourth Edition), South-Western College

Publishing.

[28] Edge, R.M., M.T. Kiley, and J.-P. Laforte (2010), �A Comparison of Forecast Perfor-

mance between Federal Reserve Sta¤ Forecasts, Simple Reduced-Form Models, and a

DSGE Model�, Journal of Applied Econometrics 25, 720-54.

[29] Edge, R.M., T. Laubach and J.C. Williams, (2007), "Learning and Shifts in Long-Run

Productivity Growth," Journal of Monetary Economics 54, 2421-2438.

[30] Elliott, G., I. Komunjer and A. Timmermann (2005), �Estimation and Testing of

Forecast Rationality under Flexible Loss�, Review of Economic Studies, 72, 1107-1125.

[31] Elliott, G. and U. Muller (2007), �Con�dence Sets for the Date of a Single Break in

Linear Time Series Regressions,�Journal of Econometrics 141, 1196-1218.

[32] Elliott, G., C. Granger and A. Timmermann (2006), Handbook of Economic Forecasting

Vol. 1, North Holland: Elsevier.

[33] Elliott, G. and A. Timmermann (2011), Handbook of Economic Forecasting, Volume

2, Elsevier-North Holland Publications.

[34] Estrella, A. and F. S. Mishkin (1998), "Predicting US Recessions: Financial Variables

as Leading Indicators", The Review of Economics and Statistics 80(1), 45-61.

[35] Faust, J., J.H. Rogers and J.H. Wright (2003), "Exchange Rate Forecasting: the Errors

We�ve Really Made," Journal of International Economics 60, 35-59.

[36] Faust, J. and J. Wright (2011), �Forecasting In�ation,�in: G. Elliott and A. Timmer-

mann, Handbook of Economic Forecasting Vol. 2, North Holland: Elsevier.

[37] Forni, M., Hallin, M., Lippi, M. and L. Reichlin (2000), �The Generalized Factor

Model: Identi�cation and Estimation�, The Review of Economics and Statistics 82(4),

540-554.

[38] Geweke, J. (1977), �The Dynamic Factor Analysis of Economic Time Series�, in:

Aigner, D. J., and A. S. Goldberger (eds.), Latent Variables in Socio-economic Models,

North Holland Publishing, ch. 19.

35



[39] Giannone, D., M. Lenza, and G. Primiceri (2010): �Prior selection for vector autore-

gressions�mimeo.

[40] Giannone, D., L. Reichlin and D. Small (2008), �Nowcasting: The real-time infor-

mational content of macroeconomic data,� Journal of Monetary Economics 55(4),

665-676.

[41] Giacomini, R. and I. Komunjer (2005), �Evaluation and combination of conditional

quantile forecasts�, Journal of Business and Economic Statistics, 23, 416-431.

[42] Giacomini, R. and B. Rossi (2006), �How Stable is the Forecasting Performance of the

Yield Curve for Output Growth?,�Oxford Bulletin of Economics and Statistics 68(s1),

783-795.

[43] Giacomini, R. and B. Rossi (2009), �Detecting and Predicting Forecast Breakdowns,�

Review of Economic Studies 76(2), 2009.

[44] Giacomini, R. and B. Rossi (2010), �Forecast Comparisons in Unstable Environments�,

Journal of Applied Econometrics 25(4), 595-620.

[45] Giacomini, R. and B. Rossi (2011), �Model Comparisons in Unstable Environments�,

mimeo, Duke University.

[46] Giacomini, R. and H. White (2006), �Tests of Conditional Predictive Ability�, Econo-

metrica, 74, 1545-1578.

[47] Giacomini, R. and G. Ragusa (2011), �Incorporating theoretical restirctions into fore-

casting by projection methods�, mimeo.

[48] Granger, C.W.J. and P. Newbold (1986), Forecasting Economic Time Series (2nd ed.),

New York: Academic Press.

[49] Gurkaynak, R. and R. Edge (2010), �HowUseful Are Estimated DSGEModel Forecasts

for Central Bankers?�, Brookings Papers on Economic Activity, 209-259.

[50] Hamilton, J. D. (1989), �A New Approach to the Economic Analysis of Nonstationary

Time Series and the Business Cycle�, Econometrica 57, 357-384.

[51] Hansen, P. R. (2005), �A test for superior predictive ability�, Journal of Business and

Economic Statistics, 23, 365-380.

36



[52] Hansen, P. R., A. Lunde, and J. M. Nason (2011), �The model con�dence set�, Econo-

metrica, 79, 452-497.

[53] Hansen, P.R. and A. Timmermann (2011), �Choice of Sample Split in Out-of-Sample

Forecast Evaluation,�mimeo.

[54] Harvey, D.I., S.J. Leybourne and P. Newbold (1998), �Tests for Forecast Encompass-

ing,�Journal of Business and Economic Statistics 16 (2), 254-259.

[55] Howrey, E.P. (1978), �The Use of the Preliminary Data in Econometric Forecasting,�

Review of Economics and Statistics 60, 193-200.

[56] Inoue, A. and L. Kilian (2006): �On the Selection of Forecasting Models�, Journal of

Econometrica, 130, 273-306.

[57] Inoue, A. and L. Kilian (2008): �How Useful is Bagging in Forecasting Economic

Time Series? A Case Study of US Consumer Price In�ation�, Journal of the American

Statistical Association, 103, 511�522.

[58] Inoue, A. and B. Rossi (2010), �Out of Sample Forecast Tests Robust to the Window

Size Choice,�CEPR Working Paper No. 8542 and Philadelphia Fed Working Paper

No. 11-31.

[59] Kim, C.J. and C. R. Nelson (1998), �Business Cycle Turning Points, a New Coincident

Index, and Tests of Duration Dependence Based on a Dynamic Factor Model with

Regime Switching�, The Review of Economics and Statistics 80, 188-201.

[60] Koenig, E., S. Dolmas and J. Piger, J. (2003), "The Use and Abuse of �Real-Time�

Data in Economic Forecasting," Review of Economics and Statistics 85, 618-628.

[61] Koop, G. and S.M. Potter (2007), �Estimation and Forecasting in Models with Multiple

Breaks,�Review of Economic Studies 74, 763-789.

[62] Lees, K, T. Matheson, and C. Smith (2011): �Open economy forecasting with a DSGE-

VAR: head to head with the RBNZ published forecasts�, International Journal of

Forecasting, 27, 512-528.

[63] Leitch, G. and E. J. Tanner (1991): �Economic forecast evaluation: pro�ts versus the

conventional error measures�, American Economic Review, 81(3), 580 - 90.

37



[64] Litterman, R. (1986): �A statistical approach to economic forecasting,� Journal of

Business & Economic Statistics, 1�4.

[65] Marcellino, M. (2009), �Leading Indicators,� in: G. Elliott, C. Granger and A. Tim-

mermann, Handbook of Economic Forecasting Vol. 1, North Holland: Elsevier.

[66] McCracken, M. (2007), �Asymptotics for out-of-sample tests of Granger causality�,

Journal of Econometrics, 140, 719-752.

[67] Meese, R. and K. S. Rogo¤ (1983), �Exchange Rate Models of the Seventies. Do They

Fit Out of Sample?,�Journal of International Economics 14, 3-24.

[68] Mincer, J. and V. Zarnowitz (1969), �The Evaluation of Economic Forecasts,� in: J.

Mincer (ed.), Economic Forecasts and Expectations, New York: National Bureau of

Economic Research, pp. 81�111.

[69] Newey, W. and K. West (1987), �A Simple, Positive Semi-De�nite, Heteroskedasticity

and Autocorrelation Consistent Covariance Matrix�, Econometrica, 55, 703-708.

[70] Orphanides, A. and S. van Norden (2005). "The Reliability of In�ation Forecasts Based

on Output Gaps in Real Time." Journal of Money, Credit, and Banking 37, 583�601.

[71] Orphanides, A. (2001). "Monetary Policy Rules Based on Real-Time Data," American

Economic Review 91, 964�985.

[72] Pesaran, M.H. and A. Timmermann (2002), �Market Timing and Return Prediction

Under Model Instability,�Journal of Empirical Finance 9(5), 495�510.

[73] Pesaran, M. H., D. Pettenuzzo and A. Timmermann (2006), �Forecasting Time Series

Subject to Multiple Structural Breaks,�Review of Economic Studies 73, 1057-1084.

[74] Pesaran, M.H. and A. Timmermann (2007), �Selection of Estimation Window in the

Presence of Breaks,�Journal of Econometrics 137(1), 134-161.

[75] Raftery, A., D. Madigan, and J. Hoeting (1997): �Bayesian model averaging for linear

regression models�Journal of the American Statistical Association, 179�191.

[76] Romano, J. P. and M. Wolf (2005), �Stepwise multiple testing as formalized data

snooping�, Econometrica, 73, 1237-1282.

38



[77] Rossi, B. (2005b), �Testing Long-Horizon Predictive Ability with High Persistence and

the Meese-Rogo¤ Puzzle�, International Economic Review 46(1), 61-92.

[78] Rossi, B. (2005), �Optimal Tests for Nested Model Selections With Underlying Para-

meter Instabilities,�Econometric Theory 21(5), 962-990.

[79] Rossi, B. (2011), �Advances in Forecasting under Instabilities�, in G. Elliott and A.

Timmermann (eds.), Handbook of Economic Forecasting, Volume 2, Elsevier-North

Holland Publications.

[80] Rossi, B. and T. Sekhposyan (2010), �Have Models�Forecasting Performance Changed

Over Time, and When?,�International Journal of Forecasting 26(4).

[81] Rossi, B. and T. Sekhposyan (2011a), �Understanding Models� Forecasting Perfor-

mance,�Journal of Econometrics 164, 158-172.

[82] Rossi, B. and T. Sekhposyan (2011b), �Forecast Optimality Tests in the Presence of

Instabilities,�mimeo, Duke University.

[83] Sargent, T.J. and C.A. Sims (1977), �Business Cycle Modeling Without Pretending to

Have Too Much a Priori Economic Theory�, in: C. Sims et al. (eds.), New Methods in

Business Cycle Research, Federal Reserve Bank of Minneapolis.

[84] Schorfheide, F. (2000): �Loss function-based evaluation of DSGE models,�Journal of

Applied Econometrics, 15, 645�670.

[85] Schrimpf, A. and Q.W. Wang (2010), �A Reappraisal of the Leading Indicator Prop-

erties of the Yield Curve Under Structural Instability,�International Journal of Fore-

casting 26(4), 836-857.

[86] Smets, F. and R. Wouters (2003): �An estimated dynamic stochastic general equi-

librium model of the euro area�, Journal of the European Economic Association, 1,

1123�1175.

[87] Stock, J.H. and M.W. Watson (1991), �A Probability Model of the Coicident In-

dicators�, in K. Lahir and G. H. Moore (eds.), Leading Economic Indicators: New

Approaches and Forecasting Records, Cambridge University Press.

39



[88] Stock, J.H. and M.W. Watson (1993), �A Procedure for Predicting Recessions with

Leading Indicators: Econometric Issues and Recent Experience", in: J.H. Stock and

M.W. Watson (eds.), Business Cycles, Indicators, and Forecasting, The University of

Chicago Press, 95-153.

[89] Stock, J.H. and M.W. Watson (1999a), �Business Cycle Fluctuations in US Macroeco-

nomic Time Series�, in: J.B. Taylor and M. Woodford (eds.), Handbook of Macroeco-

nomics Vol. 1A, Elsevier Science, North-Holland.

[90] Stock, J.H. and M.W. Watson (1999b), �Forecasting In�ation,�Journal of Monetary

Economics 44, 293-335.

[91] Stock, J. and M. Watson (2002): �Forecasting using principal components from a large

number of predictors,�Journal of the American Statistical Association, 97, 1167�1179.

[92] Stock, J.H. and M.W. Watson (2003), �Forecasting Output and In�ation: The Role of

Asset Prices,�Journal of Economic Literature XLI, 788-829.

[93] Stock, J.H. and M.W. Watson (2007), �Has In�ation Become Harder to Forecast?,�

Journal of Money, Credit and Banking 39 (1), 3�34.

[94] Swanson, N.R. (1996), "Forecasting Using First Available Versus Fully Revised Eco-

nomic Time Series Data," Studies in Nonlinear Dynamics and Econometrics 1, 47-64.

[95] Swanson, N.R. (1998), �Money and Output Viewed Through a Rolling Window,�

Journal of Monetary Economics 41, 455-473.

[96] Swanson, N.R. and H. White (1995), �AModel Selection Approach to Assessing the In-

formation in the Term Structure Using Linear Models and Arti�cal Neural Networks,�

Journal of Business and Economic Statistics 13, 265-275.

[97] Timmermann, A. (2006), �Forecast Combinations,�in: G. Elliott, C. Granger and A.

Timmermann, Handbook of Economic Forecasting Vol. 1, North Holland: Elsevier.

[98] Wang, M.C. (2009), �Comparing the DSGE model with the factor model: an out-of-

sample forecasting experiment�, Journal of Forecasting, 28, 167-182.

[99] West, K. D. (1996), �Asymptotic Inference about Predictive Ability�, Econometrica,

64, 1067-1084.

40



[100] West, K. D., H. J. Edison, and D. Cho (1993): �A Utility-Based Comparison of Some

Models of Exchange Rate Volatility,�Journal of International Economics, 35, 23�45.

[101] West, K.D., and M.W. McCracken (1998), �Regression-Based Tests of Predictive Abil-

ity,�International Economic Review 39(4), 817-840.

[102] Wheelock, D.C. and M.E. Wohar (2009), �Can the Term Spread Predict Output

Growth and Recessions? A Survey of the Literature,� Federal Reserve Bank of St.

Louis Review 91(5), 419-440.

[103] White, H. (2000), �A reality check for data snooping�, Econometrica, 68, 1097-1127.

[104] Wright, J.H. (2008), �Bayesian Model Averaging and Exchange Rate Forecasts,�Jour-

nal of Econometrics 146(2), 329-341.

[105] Wright, J.H. (2009), �Forecasting US In�ation by Bayesian Model Averaging,�Journal

of Forecasting 28(2), 131-144.

41


