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Abstract

This paper proposes new methodologies for evaluating out-of-sample forecasting

performance that are robust to the choice of the estimation window size. The method-

ologies involve evaluating the predictive ability of forecasting models over a wide range

of window sizes. We show that the tests proposed in the literature may lack the power

to detect predictive ability and might be subject to data snooping across di¤erent

window sizes if used repeatedly. An empirical application shows the usefulness of the

methodologies for evaluating exchange rate models�forecasting ability.

Keywords: Predictive Ability Testing, Forecast Evaluation, Estimation Window.

Acknowledgments: We thank the editor, the associate editor, two referees as well as

S. Burke, M.W. McCracken, J. Nason, A. Patton, K. Sill, D. Thornton and seminar par-

ticipants at the 2010 Econometrics Workshop at the St. Louis Fed, Bocconi University,

U. of Arizona, Pompeu Fabra U., Michigan State U., the 2010 Triangle Econometrics

Conference, the 2011 SNDE Conference, the 2011 Conference in honor of Hal White,

the 2011 NBER Summer Institute and the 2011 Joint Statistical Meetings for useful

comments and suggestions. This research was supported by National Science Founda-

tion grants SES-1022125 and SES-1022159 and North Carolina Agricultural Research

Service Project NC02265.

J.E.L. Codes: C22, C52, C53

1



1 Introduction

This paper proposes new methodologies for evaluating the out-of-sample forecasting perfor-

mance of economic models. The novelty of the methodologies that we propose is that they

are robust to the choice of the estimation and evaluation window size. The choice of the

estimation window size has always been a concern for practitioners, since the use of di¤er-

ent window sizes may lead to di¤erent empirical results in practice. In addition, arbitrary

choices of window sizes have consequences about how the sample is split into in-sample and

out-of-sample portions. Notwithstanding the importance of the problem, no satisfactory

solution has been proposed so far, and in the forecasting literature it is common to only

report empirical results for one window size. For example, to illustrate the di¤erences in

the window sizes, we draw on the literature on forecasting exchange rates (the empirical

application we will focus on): Meese and Rogo¤ (1983a) use a window of 93 observations

in monthly data, Chinn (1991) a window size equal to 45 in quarterly data, Qi and Wu

(2003) use a window of 216 observations in monthly data, Cheung et al. (2005) consider

windows of 42 and 59 observations in quarterly data, Clark and West�s (2007) window is 120

observations in monthly data, Gourinchas and Rey (2007) consider a window of 104 obser-

vations in quarterly data, and Molodtsova and Papell (2009) consider a window size of 120

observations in monthly data. This common practice raises two concerns. A �rst concern

is that the �ad hoc�window size used by the researcher may not detect signi�cant predic-

tive ability even if there would be signi�cant predictive ability for some other window size

choices. A second concern is the possibility that satisfactory results were obtained simply by

chance, after data snooping over window sizes. That is, the successful evidence in favor of

predictive ability might have been found after trying many window sizes, although only the

results for the successful window size were reported and the search process was not taken

into account when evaluating their statistical signi�cance. Only rarely do researchers check

the robustness of the empirical results to the choice of the window size by reporting results

for a selected choice of window sizes. Ultimately, however, the size of the estimation window

is not a parameter of interest for the researcher: the objective is rather to test predictive

ability and, ideally, researchers would like to reach empirical conclusions that are robust to

the choice of the estimation window size.

This paper views the estimation window as a �nuisance parameter�: we are not interested

in selecting the �best� window; rather we would like to propose predictive ability tests

that are �robust� to the choice of the estimation window size. The procedures that we
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propose ensure that this is the case by evaluating the models�forecasting performance for

a variety of estimation window sizes, and then taking summary statistics of this sequence.

Our methodology can be applied to most tests of predictive ability that have been proposed

in the literature, such as Diebold and Mariano (1995), West (1996), McCracken (2000) and

Clark and McCracken (2001). We also propose methodologies that can be applied to Mincer

and Zarnowitz�s (1969) tests of forecast e¢ ciency, as well as more general tests of forecast

optimality. Our methodologies allow both for rolling as well as recursive window estimation

schemes and let the window size to be large relative to the total sample size. Finally, we also

discuss methodologies that can be used in the Giacomini and White�s (2005) and Clark and

West�s (2007) frameworks, where the estimation scheme is based on a rolling window with

�xed size.

This paper is closely related to the works by Pesaran and Timmermann (2007) and Clark

and McCracken (2009), and more distantly related to Pesaran, Pettenuzzo and Timmermann

(2006) and Giacomini and Rossi (2010). Pesaran and Timmermann (2007) propose cross val-

idation and forecast combination methods that identify the "ideal" window size using sample

information. In other words, Pesaran and Timmermann (2007) extend forecast averaging

procedures to deal with the uncertainty over the size of the estimation window, for example,

by averaging forecasts computed from the same model but over various estimation win-

dow sizes. Their main objective is to improve the model�s forecast. Similarly, Clark and

McCracken (2009) combine rolling and recursive forecasts in the attempt to improve the

forecasting model. Our paper instead proposes to take summary statistics of tests of predic-

tive ability computed over several estimation window sizes. Our objective is not to improve

the forecasting model nor to estimate the ideal window size. Rather, our objective is to

assess the robustness of conclusions of predictive ability tests to the choice of the estimation

window size. Pesaran, Pettenuzzo and Timmermann (2006) have exploited the existence of

multiple breaks to improve forecasting ability; in order to do so, they need to estimate the

process driving the instability in the data. An attractive feature of the procedure we propose

is that it does not need to impose nor determine when the structural breaks have happened.

Giacomini and Rossi (2010) propose techniques to evaluate the relative performance of com-

peting forecasting models in unstable environments, assuming a �given�estimation window

size. In this paper, our goal is instead to ensure that forecasting ability tests be robust to the

choice of the estimation window size. That is, the procedures that we propose in this paper

are designed for determining whether �ndings of predictive ability are robust to the choice

of the window size, not to determine which point in time the predictive ability shows up:
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the latter is a very di¤erent issue, important as well, and was discussed in Giacomini and

Rossi (2010). Finally, this paper is linked to the literature on data snooping: if researchers

report empirical results for just one window size (or a couple of them) when they actually

considered many possible window sizes prior to reporting their results, their inference will

be incorrect. This paper provides a way to account for data snooping over several window

sizes and removes the arbitrary decision of the choice of the window length.

After the �rst version of this paper was submitted, we became aware of independent

work by Hansen and Timmermann (2011). Hansen and Timmermann (2011) propose a

sup-type test similar to ours, although they focus on p-values of the Diebold and Mariano�s

(1995) test statistic estimated via a recursive window estimation procedure for nested models�

comparisons. They provide analytic power calculations for the test statistic. Our approach

is more generally applicable: it can be used for inference on out-of-sample models�forecast

comparisons and to test forecast optimality where the estimation scheme can be either rolling,

�xed or recursive, and the window size can be either a �xed fraction of the total sample size

or �nite. Also, Hansen and Timmermann (2011) do not consider the e¤ects of time-varying

predictive ability on the power of the test.

We show the usefulness of our methods in an empirical analysis. The analysis re-evaluates

the predictive ability of models of exchange rate determination by verifying the robustness

of the recent empirical evidence in favor of models of exchange rate determination (e.g.,

Molodtsova and Papell, 2009, and Engel, Mark and West, 2007) to the choice of the window

size. Our results reveal that the forecast improvements found in the literature are much

stronger when allowing for a search over several window sizes. As shown by Pesaran and

Timmermann (2005), the choice of the window size depends on the nature of the possible

model instability and the timing of the possible breaks. In particular, a large window is

preferable if the data generating process is stationary but comes at the cost of lower power,

since there are fewer observations in the evaluation window. Similarly, a shorter window may

be more robust to structural breaks, although it may not provide as precise an estimation as

larger windows if the data are stationary. The empirical evidence shows that instabilities are

widespread for exchange rate models (see Rossi, 2006), which might justify why in several

cases we �nd improvements in economic models�forecasting ability relative to the random

walk for small window sizes.

The paper is organized as follows. Section 2 proposes a framework for tests of predictive

ability when the window size is a �xed fraction of the total sample size. Section 3 presents

tests of predictive ability when the window size is a �xed constant relative to the total sample
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size. Section 4 shows some Monte Carlo evidence on the performance of our procedures in

small samples, and Section 4 presents the empirical results. Section 5 concludes.

2 Robust Tests of Predictive Accuracy When the Win-

dow Size is Large

Let h � 1 denote the (�nite) forecast horizon. We assume that the researcher is interested
in evaluating the performance of h�steps-ahead direct forecasts for the scalar variable yt+h
using a vector of predictors xt using either a rolling, recursive or �xed window direct forecast

scheme. We assume that the researcher has P out-of-sample predictions available, where the

�rst prediction is made based on an estimate from a sample 1; 2; :::; R, such that the last out-

of-sample prediction is made based on an estimate from a sample of T�R+1; :::; R+P�1 = T
where R+P+h�1 = T+h is the size of the available sample. The methods proposed in this
paper can be applied to out-of-sample tests of equal predictive ability, forecast rationality

and unbiasedness.

In order to present the main idea underlying the methods proposed in this paper, let us

focus on the case where researchers are interested in evaluating the forecasting performance of

two competing models: Model 1, involving parameters �, and Model 2, involving parameters


. The parameters can be estimated either with a rolling, �xed or a recursive window

estimation scheme. In the rolling window forecast method, the true but unknown model�s

parameters �� and 
� are estimated by b�t;R and b
t;R using samples of R observations dated
t�R+1; :::; t, for t = R; R+1; :::; T . In the recursive window estimation method, the model�s
parameters are instead estimated using samples of t observations dated 1; :::; t, for t = R;

R + 1; :::; T . In the �xed window estimation method, the model�s parameters are estimated

only once using observations dated 1; :::; R. Let
n
L
(1)
t+h

�b�t;R�oT
t=R

and
n
L
(2)
t+h

�b
t;R�oT
t=R

denote the sequence of loss functions of models 1 and 2 evaluating h�steps-ahead relative
out-of-sample forecast errors, and let

n
�Lt+h

�b�t;R; b
t;R�oT
t=R

denote their di¤erence.

Typically, researchers rely on the Diebold and Mariano (1995), West (1996), McCracken

(2000) or Clark and McCracken�s (2001) test statistics for inference on the forecast error

loss di¤erences. For example, in the case of the Diebold and Mariano�s (1995) and West�s

(1996) test, researchers evaluate the two models using the sample average of the sequence of
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standardized out-of-sample loss di¤erences:

�LT (R) �
1b�RP�1=2

TX
t=R

�Lt+h(b�t;R; b
t;R); (1)

where b�2R is a consistent estimate of the long run variance matrix of the out-of-sample loss
di¤erences, which di¤ers in the Diebold and Mariano�s (1995) and West�s (1996) approaches.

The problem we focus on is that inference based on eq. (1) relies crucially on R, which

is the size of the rolling window in the rolling estimation scheme or the way the sample

is split into the in-sample and out-of-sample portions in the �xed and recursive estimation

schemes. In fact, any out-of-sample test for inference regarding predictive ability does require

researchers to choose R: The problem we focus on is that it is possible that, in practice, the

choice of R may a¤ect the empirical results. Our main goal is to design procedures that will

allow researchers to make inference about predictive ability in a way that does not depend

on the choice of the window size.

We argue that the choice of R raises two types of concerns. First, if the researcher tries

several window sizes and then reports the empirical evidence based on the window size that

provides him the best empirical evidence in favor of predictive ability, his test may be over-

sized. That is, the researcher will reject the null hypothesis of equal predictive ability in

favor of the alternative that the proposed economic model forecasts the best too often, thus

�nding predictive ability even if it is not signi�cant in the data. The problem is that the

researcher is e¤ectively "data-mining" over the choice of R, and does not correct the critical

values of the test statistic to take into account the search over window sizes. This is mainly

a size problem.

A second type of concern arises when the researchers has simply selected an ad-hoc value

of R without trying alternative values. In this case, it is possible that, when there is some

predictive ability only over a portion of the sample, he may lack to �nd empirical evidence

in favor of predictive ability because the window size was either too small or large to capture

it. This is mainly a lack of power problem.

Our objective is to consider R as a nuisance parameter, and develop test statistics to

perform inference about predictive ability that does not depend on R. The main results in

this paper follow from a very simple intuition: if partial sums of the test function (either

forecast error losses, or adjusted forecast error losses, or functions of forecast errors) obey

a Functional Central Limit Theorem (FCLT), we can take any summary statistic across

window sizes to robustify inference and derive its asymptotic distribution by applying the
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Continuous Mapping Theorem (CMT). We consider two appealing and intuitive types of

weighting schemes over the window sizes. The �rst scheme is to choose the largest value of

the �LT (R) test sequence, which corresponds to a �sup-type�test. This mimics to the case

of a researcher experimenting with a variety of window sizes and reporting only the empirical

results corresponding to the best evidence in favor of predictive ability. The second scheme

involves taking a weighted average of the �LT (R) tests, giving equal weight to each test.

This choice is appropriate when researchers have no prior information on which window sizes

are the best for their analysis. This choice corresponds to an average-type test. Alternative

choices of weighting functions could be entertained and the asymptotic distribution of the

resulting test statistics could be obtained by arguments similar to those discussed in this

paper.

The following proposition states the general intuition behind the approach proposed in

this paper. In the subsequent sub-sections we will verify that the high-level assumption in

Proposition 1, eq. (2), holds for the test statistics we are interested in.

Proposition 1 (Asymptotic Distribution.) Let ST (R) denote a test statistic with win-

dow size R. We assume that the test statistic ST (�) we focus on satis�es

ST ([�(�)T ]) ) S(�) (2)

where �(�) is the identity function, that is, �(x) = x, and ) denotes weak convergence in the

space of cadlag functions on [0; 1] equipped with the Skorokhod metric. Then,

sup
[�T ]�R�[�T ]

ST (R)
d! sup
�����

S(�); (3)

1

[�T ]� [�T ] + 1

[�T ]X
R=[�T ]

ST (R)
d!
Z �

�

S(�)d� (4)

where 0 < � < � < 1.

Note that this approach assumes that R is growing with the sample size and, asymp-

totically, becomes a �xed fraction of the total sample size. This assumption is consistent

with the approaches by West (1996), West and McCracken (1998) and McCracken (2001).

The next section will consider test statistics where the window size is �xed. Note also that

based on Proposition 1 we can construct both one-sided as well as two-sided test statistics;

for example, as a corollary of the Proposition, one can construct two-sided test statistics in
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the �sup-type� test statistic by noting that sup[�T ]�R�[�T ] jST (R)j
d! sup����� jS(�)j, and

similarly of the average-type test statistic.

In the existing tests, � = lim
T!1

R
T
is �xed and condition (2) holds pointwise for a given

�. Condition (2) requires that the convergence holds uniformly in � rather than pointwise,

however. It turns out that this high-level assumption can be shown to hold for many of the

existing tests of interest under their original assumptions. As we will show in the next sub-

sections, this is because existing tests had already imposed assumptions for the FCLT to take

into account recursive, rolling and �xed estimation schemes and because weak convergence

to stochastic integrals can hold for partial sums (Hansen, 1992).

Note also that the practical implementation of (3) and (4) requires researchers to choose

� and �. To avoid data snooping over the choices of � and �, we recommend researchers to

impose symmetry by �xing � = 1��, and to use � = [0:15] in practice. The recommendation
is based on the small sample performance of the test statistics that we propose, discussed in

Section 4.

We next discuss how this result can be directly applied to widely used measures of relative

forecasting performance, where the loss function is the di¤erence of the forecast error losses of

two competing models. We consider two separate cases, depending on whether the models are

nested or non-nested. Subsequently we present results for regression-based tests of predictive

ability, such as Mincer and Zarnowitz�s (1969) forecast rationality regressions, among others.

For each of the cases that we consider, Appendix A in Inoue and Rossi (2012) provides

a sketch of the proof that the test statistics satisfy condition (2) provided the variance

estimator converges in probability uniformly in R. Our proofs are a slight modi�cation of

West (1996), Clark and McCracken (2001) and West and McCracken (1998) and extend their

results to weak convergence in the space of functions on [�; �]. The uniform convergence of

variance estimators follows from the uniform convergence of second moments of summands

in the numerator and the uniform convergence of rolling and recursive estimators, as in the

literature on structural change (see Andrews, 1993, for example).

2.1 Non-Nested Model Comparisons

Traditionally, researchers interested in doing inference about the relative forecasting perfor-

mance of competing, non-nested models rely on the Diebold and Mariano�s (1995), West�s

(1996) and McCracken�s (2000) test statistics. The statistic tests the null hypothesis that

the expected value of the loss di¤erences evaluated at the pseudo-true parameter values

8



equals zero. That is, let �L�T (R) denote the value of the test statistic evaluated at the

true parameter values; then the null hypothesis can be rewritten as: E [�L�T (R)] = 0. The

test statistic that they propose relies on the sample average of the sequence of standardized

out-of-sample loss di¤erences, eq. (1):

�LT (R) �
1b�RP�1=2

TX
t=R

�Lt+h(b�t;R; b
t;R); (5)

where b�2R is a consistent estimate of the long run variance matrix of the out-of-sample loss
di¤erences. A consistent estimate of �2 for non-nested model comparisons that does not

take into account parameter estimation uncertainty is provided in Diebold and Mariano

(1995). Consistent estimates of �2 that take into account parameter estimation uncertainty

in recursive windows are provided by West (1996) and in rolling and �xed windows are

provided by McCracken (2000, p. 203, eqs. 5 and 6). For example, a consistent estimator

when parameter estimation error is negligible is:

�̂2R =

q(P )�1X
i=�q(P )+1

(1� ji=q(P )j)P�1
TX
t=R

�Ldt+h

�b�t;R; b
t;R��Ldt+h�i �b�t�i;R; b
t�i;R� ; (6)

where �Ldt+h
�b�t;R; b
t;R� � �Lt+h �b�t;R; b
t;R� � P�1PT

t=R�Lt+h

�b�t;R; b
t;R� and q(P ) is a
bandwidth that grows with P (e.g., Newey and West, 1987). In particular, a leading case

where (6) can be used is when the same loss function is used for estimation and evaluation.

For convenience, we provide the consistent variance estimate for rolling, recursive and �xed

estimation schemes in Appendix A in Inoue and Rossi (2012).

Appendix A in Inoue and Rossi (2012) shows that Proposition (1) applies to the test sta-

tistic (5) under broad conditions. Examples of typical non-nested models satisfying Propo-

sition 1 (provided that the appropriate moment conditions are satis�ed) include linear and

non-linear models estimated by any extremum estimator (e.g. Ordinary Least Squares, Gen-

eral Method of Moments and Maximum Likelihood); the data can have serial correlation

and heteroskedasticity, but are required to be stationary under the null hypothesis (which

rules out unit roots and structural breaks). McCracken (2000) shows that this framework

allows for a wide class of loss functions.

Our proposed procedure specialized to two-sided tests of non-nested forecast model com-

parisons is as follows. Let

RT = sup
R2fR;:::Rg

j�LT (R) j; (7)
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and

AT =
1

R�R + 1

RX
R=R

j�LT (R)j ; (8)

where �LT (R) is de�ned in eq. (5), R = [�T ] ; R = [�T ]; R = [�T ]; and �̂
2
R is a consistent

estimator of �2. Reject the null hypothesis H0 : limT!1E [�L
�
T (R)] = 0 for all R in favor

of the alternative HA : limT!1E [�L
�
T (R)] 6= 0 for some R at the signi�cance level � when

RT > k
R
� or when AT > kA� ; where the critical values kR� and kA� are reported in Table 1,

Panel A, for � = 0:15. The critical values of these tests as well as the other tests when

� = 0:20; 0:25; 0:30; 0:35 can be found in the working paper version; see Inoue and Rossi

(2011).

Researchers might be interested in performing one-sided tests as well. In that case, the

tests in eqs. (7) and (8) should be modi�ed follows: RT = supR2[R;:::R] �LT (R) ; AT =

1
R�R+1

RX
R=R

�LT (R). The tests reject the null hypothesis H0 : limT!1E [�L
�
T (R)] = 0 for

all R in favor of the alternative HA : limT!1E [�L
�
T (R)] < 0 for some R at the signi�cance

level � when RT > k
R
� or when AT > kA� ; where the critical values kR� and kA� are reported

in Table 1, Panel B, for � = 0:15.

Finally, it is useful to remind readers that, as discussed in Clark and McCracken (2011b),

(5) is not necessarily asymptotically normal even when the models are not nested. For

example, when yt+1 = �0+�1xt+ut+1 and yt+1 = �0+�1zt+ vt+h with xt independent of zt
and �1 = �1 = 0, the two models are non-nested but (5) is not asymptotically normal. The

asymptotic normality result does not hinge on whether or not two models are nested but

rather on whether or not the disturbance terms of the two models are numerically identical

in population under the null hypothesis.

2.2 Nested Models Comparison

For the case of nested models comparison, we follow Clark and McCracken (2001). Let

Model 1 be the parsimonious model, and Model 2 be the larger model that nests Model 1.

Let yt+h denote the variable to be forecast and let the period-t forecasts of yt+h from the two

models be denoted by by1;t+h and by2;t+h: the �rst ("small") model uses k1 regressors x1;t and
the second ("large") model uses k1+ k2 = k regressors x1;t and x2;t. Clark and McCracken�s
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(2001) ENCNEW test is de�ned as:

�LET (R) � P
P�1

PT
t=R

�
(yt+h � by1;t+h)2 � (yt+h � by1;t+h) (yt+h � by2;t+h)�

P�1
PT

t=R (yt+h � by2;t+h)2 ; (9)

where P is the number of out-of-sample predictions available, and by1;t+h; by2;t+h depend on
the parameter estimates �̂t;R; 
̂t;R. Note that, since the models are nested, Clark and Mc-

Cracken�s (2001) test is one sided.

Appendix A in Inoue and Rossi (2012) shows that Proposition 1 applies to the test

statistic (9) under the same assumptions as in Clark and McCracken (2001). In particular,

their assumptions hold for one-step-ahead forecast errors (h = 1) from linear, homoskedastic

models, OLS estimation, and MSE loss function (as discussed in Clark and McCracken

(2001), the loss function used for estimation has to be the same as the loss function used for

evaluation).

Our robust procedure specializes to tests of nested forecast model comparisons as follows.

Let

RE
T = sup

R2fR;:::Rg
�LET (R) ; (10)

and

AET =
1

R�R + 1

RX
R=R

�LET (R) : (11)

Reject the null hypothesis H0 : limT!1E[�L
E
T (R)] = 0 for all R at the signi�cance level �

against the alternativeHA : limT!1E[�L
E
T (R)] > 0 for some R whenRE

T > k
R
� orAET > kA� ;

where the critical values kR� and k
A
� for � = 0:15 are reported in Table 2.

2.3 Regression-Based Tests of Predictive Ability

Under the widely used MSFE loss, optimal forecasts have a variety of properties. They should

be unbiased, one step-ahead forecast errors should be serially uncorrelated, and h-steps-

ahead forecast errors should be correlated at most of order h�1 (see Granger and Newbold,
1986, and Diebold and Lopez, 1996). It is therefore interesting to test such properties.

We do so in the same framework as West and McCracken (1998). Let the forecast error

evaluated at the pseudo-true parameter values �� be vt+h (�
�) � vt+h, and its estimated

value be vt+h
�b�t;R� � bvt+h. We assume one is interested in the linear relationship between

the prediction error, vt+h, and a (p� 1) vector function of data at time t.
For the purposes of this section, let us de�ne the loss function of interest to be Lt+h (�),

whose estimated counterpart is Lt+h(b�t;R) � bLt+h. To be more speci�c:
11



De�nition (Special Cases of Regression-based tests of Predictive Ability) The following are

special cases of regression-based tests of predictive ability:

(i) Forecast Unbiasedness Tests: bLt+h = bvt+h:
(ii) Mincer-Zarnowitz�s (1969) Tests (or E¢ ciency Tests): bLt+h = bvt+hXt, where Xt is a

vector of predictors known at time t (see also Chao, Corradi and Swanson, 2001). One

important special case is when Xt is the forecast itself.

(iii) Forecast Encompassing Tests (Chong and Hendry, 1986, Clements and Hendry, 1993,

Harvey, Leybourne and Newbold, 1998): bLt+h = bvt+hft; where ft is the forecast of the en-
compassed model.

(iv) Serial Uncorrelation Tests: bLt+h = bvt+hbvt:
More generally, let the loss function of interest be the (p� 1) vector Lt+h (��) = vt+hgt,

whose estimated counterpart is bLt+h = bvt+hbgt, where gt (��) � gt denotes the function

describing the linear relationship between vt+h and a (p� 1) vector function of data at time
t, with gt(b�t) � bgt. In the examples above: (i) gt = 1; (ii) gt = Xt; (iii) gt = ft; (iv) gt = vt.

The null hypothesis of interest is typically:

E (Lt+h(��)) = 0: (12)

In order to test (12), one simply tests whether bLt+h has zero mean by a standard Wald test
in a regression of bLt+h onto a constant (i.e., testing whether the constant is zero). That is,

WT (R) = P
�1

TX
t=R

bL0t+hb
�1R TX
t=R

bLt+h; (13)

where b
R is a consistent estimate of the long run variance matrix of the adjusted out-
of-sample losses, 
, typically obtained by using West and McCracken�s (1998) estimation

procedure.

Appendix A in Inoue and Rossi (2012) shows that Proposition 1 applies to the test

statistic (13) under broad conditions, which are similar to those discussed for eq. (5). The

framework allows for linear and non-linear models estimated by any extremum estimator (e.g.

OLS, GMM and MLE), the data to have serial correlation and heteroskedasticity as long as

stationary is satis�ed (which rules out unit roots and structural breaks), and forecast errors

(which can be either one period or multi-period) evaluated using continuously di¤erentiable

loss functions, such as MSE.
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Our proposed procedure specialized to tests of forecast optimality is the following. Let

RW
T = sup

R2fR;:::Rg
[ bLT (R)0 b
�1R bLT (R)]; (14)

and

AWT =
1

R�R + 1

RX
R=R

[ bLT (R)0 b
�1R bLT (R)]; (15)

where bLT (R) � P�1=2
PT

t=R
bLt+h;and b
R is a consistent estimator of 
. Reject the null

hypothesis H0 : limT!1E (Lt+h(��)) = 0 for all R at the signi�cance level � when RW
T > kR�

for the sup-type test and when AWT > kA;W�;p for the average-type test, where the critical

values kR;W�;p and kA;W�;p for � = 0:15 are reported in Table 3.

A simple, consistent estimator for 
 can be obtained by following West and McCracken

(1998). West and McCracken (1998) have shown that it is very important to allow for a

general variance estimator that takes into account estimation uncertainty and/or correcting

the statistics by the necessary adjustments. See West and McCracken�s (1998) Table 2

for details on the necessary adjustment procedures for correcting for parameter estimation

uncertainty. The same procedures should be implemented to obtain correct inference in

regression-based tests in our setup. For convenience, we discuss in detail how to construct a

consistent variance estimate in the leading case of Mincer and Zarnowitz�s (1969) regressions

in Appendix B in Inoue and Rossi (2012) in either rolling, recursive or �xed estimation

schemes.

Historically, researchers have estimated the alternative regression: bvt+h = bg0t �b� (R)+b�t+h,
where b� (R) = �

P�1
PT

t=R bgtbg0t��1 �P�1PT
t=R bgtbvt+h� and b�t+h is the �tted error of the

regression, and tested whether the coe¢ cients equal zero. It is clear that under the additional

assumption that E (gtg0t) is full rank (a maintained assumption in that literature) the two

procedures share the same null hypothesis and are therefore equivalent. However, in this

case it is convenient to de�ne the following re-scaled Wald test:

W(r)
T (R) = b� (R)0 bV �1� (R)b� (R) ;

where bV�(R) is a consistent estimate of the asymptotic variance of b� (R) ; V�: We propose
the following tests:

RW
T = sup

R2fR;:::Rg
b� (R)0 bV �1� (R)b� (R) ; (16)

and

AWT =
1

R�R + 1

RX
R=R

b� (R)0 bV �1� (R)b� (R) : (17)
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Reject the null hypothesis H0 : limT!1E [b� (R)] = 0 for all R when R�
T > kR;W�;p for the

sup-type test and when A�T > kA;W�;p for the average-type test. Simulated values of kR;W�;p and

kA;W�;p for � = 0:15 and various values of p are reported in Table 3.

Under more general speci�cations for the loss function, the properties of forecast errors

previously discussed may not hold. In those situations, Patton and Timmermann (2007)

show that a �generalized forecast error�does satisfy the same properties. The procedures

that we propose can also be applied to Patton and Timmermann�s (2007) generalized forecast

error.

3 Robust Tests of Predictive Accuracy When the Win-

dow Size is Small

All the tests considered so far rely on the assumption that the window is a �xed fraction of

the total sample size, asymptotically. This assumption rules out the tests by Clark and West

(2006, 2007) and Giacomini and White (2005), which rely on a constant (�xed) window size.

Propositions 2 and 3 extend our methodology in these two cases by allowing the window size

to be �xed.

First, we will consider a version of Clark and West�s (2006, 2007) test statistics. Monte

Carlo evidence in Clark and West (2006, 2007) and Clark and McCracken (2001, 2005) shows

that Clark and West�s (2007) test has power broadly comparable to the power of an F-type

test of equal MSE. Clark and West�s (2006, 2007) test is also popular because it has the

advantage of being approximately normal, which permits the tabulation of asymptotic critical

values applicable under multi-step forecasting and conditional heteroskedasticity. Before we

get into details, a word of caution: our setup requires strict exogeneity of the regressors,

which is a very strong assumption in time series application. When the window size diverges

to in�nity, the correlation between the rolling regression estimator and the regressor vanishes

even when the regressor is not strictly exogenous. When the window size is �xed relative

to the sample size, however, the correlation does not vanish even asymptotically when the

regressor is not strictly exogenous. When the null model is the no-change forecast model as

required by the original test of Clark and West (2006, 2007) when the window size is �xed,

the assumption of strict exogeneity can be dropped and our test statistic becomes identical

to theirs.
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Consider the following nested forecasting models:

yt+h = �01x1t + e1;t+h; (18)

yt+h = �02x2t + e2;t+h; (19)

where x2;t = [x01;t z
0
t]
0. Let �̂1t(R) = (

Pt
s=t�R+1 x1;sx

0
1;s)

�1Pt
s=t�R+1 x1;sys+h and

�̂2t(R) = (
Pt

s=t�R+1 x2;sx
0
2;s)

�1Pt
s=t�R+1 x2;sys+h and let ê1;t+h(R) and ê2;t+h(R) denote the

corresponding models�h-steps-ahead forecast errors. Note that, since the models are nested,

Clark and West�s (2007) test is one sided. Under the null hypothesis that ��2 = [�
�0
1 0

0]0, the

MSPE-adjusted of Clark and West (2007) can be written as:

MSPE-adjusted = P�1
TX
t=R

ê21;t+h(R)�
�
ê22;t+h(R)� (ŷ1;t+h � ŷ2;t+h)2

�
= 2P�1

TX
t=R

ê1;t+h(R) [ê1;t+h(R)� ê2;t+h(R)]

where P�1
PT

t=R(ŷ1;t+h � ŷ2;t+h)2 is the adjustment term. When R is �xed, as Clark and

West (2007, p.299) point out, the mean ofMSPE-adjusted is nonzero unless x1t is null. We

consider an alternative adjustment term so that the adjusted loss di¤erence will have zero

mean. Suppose that ��2 = [�
�0
1 0

0]0 and that x2;t is strictly exogenous. Then we have

E[(ê21;t+h � ê2;t+h)2] = E[(yt+h � ŷ1;t+h)2]� E[(yt+h � ŷ2;t+h)2]

= E(y2t+h � 2yt+hx01t�̂1t + ŷ21;t+h)� E(y2t+h � 2yt+hx02t�̂2t + ŷ22;t+h)

= E[ŷ21;t+h � ŷ22;t+h] + 2E[yt+h(x02t�̂2t � x01t�̂1t)]

= E[ŷ21;t+h � ŷ22;t+h] + 2Efyt+h[x02t(�̂2t � ��2)� x01t(�̂1t � ��1)]g (20)

= E[ŷ21;t+h � ŷ22;t+h] + 2E[��01 x1t(x02t(�̂2t � ��2)� x01t(�̂1t � ��1))] (21)

= E[ŷ21;t+h � ŷ22;t+h];

where the fourth equality follows from the null hypothesis, ��2 = [�
�0
1 0

0]0, the �fth equality

follows from the null that e2;t+h is orthogonal to the information set at time t and the last

equality from the strict exogeneity assumption. Thus �t+h(R) � ê21;t+h(R) � ê22;t+h(R) �
[ŷ21;t+h(R)� ŷ22;t+h(R)] has zero mean even when x1t is not null provided that the regressors
are strictly exogenous.

When R is �xed, Clark and West�s adjustment term is valid if the null model is the no-

change forecast model, i.e., x1t is null. When x1t is null, the second term on the right-hand

side of equation (20) is zero even when x2t is not strictly exogenous, and our adjustment

term and theirs become identical.
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Proposition 2 (Out-of-Sample Robust Test with Fixed Window Size I. ) Suppose

that: (a) either x1t is null or E(e2tjx2s) = 0 for all s and t such that t�R � s � t+R; (b)
f[e1;t+1; x01;t+1; z0t+1]0g is �-mixing of size �r=(r� 2); (c) [e1;t+h; x01;t; z0t; �̂1;t(R)0; �̂1;t(R+1)0;
:::; �̂1;t(R); �̂2;t(R)

0; �̂2;t(R + 1)
0; :::; �̂2;t(R)]

0 has �nite 4r-th moments uniformly in t; (d) R

and R are �xed constants. Then

�R �

2666664
P�1=2

PT
t=R �t+h(R)

P�1=2
PT

t=R+1 �t+h(R + 1)
...

P�1=2
PT

t=R �t+h(R)

3777775 d! N(0;
)

where 
 is the long-run covariance matrix, 
 =
P1

j=�1 �j and

�j = E

8>>>>><>>>>>:

2666664
�t+h(R)

�t+h(R + 1)
...

�t+h(R)

3777775

2666664
�t+h�j(R)

�t+h�j(R + 1)
...

�t+h�j(R)

3777775
09>>>>>=>>>>>;
:

Let r = R�R + 1: The test that we propose is:

CWT � �0Rb
�1�R d! �2r; (22)

where b
 is a consistent estimate of 
. The null hypothesis is rejected at the signi�cance

level � for any R when CWT > �2r;�, where �
2
r;� is the (1� �)-th quantile of a chi-square

distribution with r degrees of freedom.

The proof of this proposition follows directly from Corollary 24.7 of Davidson (1994,

p.387). Assumption (a) is necessary for �t+h(R) to have zero mean and is satis�ed under the

assumption discussed by Clark and West (x1t is not null) or under the assumption that x2t
is strictly exogenous. The latter assumption is very strong in the applications of interest.

We also consider the Giacomini and White�s (2005) framework. Proposition 3 provides

a methodology that can be used to robustify their test for unconditional predictive ability

with respect to the choice of the window size.

Proposition 3 (Out-of-sample Robust Tests with Fixed Window Size II. ) Suppose

the assumptions of Theorem 4 in Giacomini and White (2005) hold, and that there exists a
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unique window size R 2 fR; :::; Rg for which the null hypothesisH0 : limT!1E
h
�LT

�b�t;R; b
t;R�i =
0 holds. Let

GWT = inf
R2fR;:::;Rg

j�LT (R) j; (23)

where �LT (R) � 1b�RT�1=2PT
t=R�LT (

b�t;R; b
t;R); R and R are �xed constants, and �̂2R is a

consistent estimator of �2. Under the null hypothesis,

GWT
d! N (0; 1) ;

The null hypothesis for the GWT test is rejected at the signi�cance level � in favor of the

two-sided alternative limT!1E
h
�LT

�b�t;R; b
t;R�i 6= 0 for any R when GWT > z�=2; where

z�=2 is the 100 (1� �=2)% quantile of a standard normal distribution.

Note that, unlike the previous cases, in this case we consider the inf (�) over the sequence
of out-of-sample tests rather than the sup (�). The reason why we do so is related to the
special nature of Giacomini and White�s (2005) null hypothesis: if their null hypothesis is

true for one window size then it is necessarily false for other window sizes; thus, the test

statistic is asymptotically normal for the former, but diverges for the others. That is why it

makes sense to take the inf (�). Our assumption that the null hypothesis holds only for one
value of R may sound peculiar, but the unconditional predictive ability test of Giacomini

and White (2005) typically implies a unique value of R, although there is no guarantee that

the null hypothesis of Giacomini and White (2006) holds in general. For example, consider

the the case where data are generated from yt = ��2 + et where et
iid� (0; �2), and let

the researcher be interested in comparing the MSFE of a model where yt is unpredictable

(yt = e1t) with that of a model where yt is constant (yt = �2+e2;t). Under the unconditional

version of the null hypothesis we have E[y2t+1 � (yt+1 � R�1�tj=t�R+1yj)2] = 0, which in

turn implies ��22 � �2

R
= 0. Thus, if the null hypothesis holds then it holds with a unique

value of R. Our proposed test protects applied researchers from incorrectly rejecting the

null hypothesis by choosing an ad hoc window size, which is important especially for the

Giacomini and White�s (2005) test, given its sensitivity to data snooping over window sizes.

The proof of Proposition 3 is provided in Appendix A in Inoue and Rossi (2012). Note

that one might also be interested in a one-sided test, whereH0 : limT!1E
h
�LT

�b�t;R; b
t;R�i =
0 versus the alternative that limT!1E

h
�LT

�b�t;R; b
t;R�i > 0. In that case, construct

GWT = infR=R;:::R�LT (R) ; and reject when GWT > z�; where z�=2 is the 100(1� �)%
quantile of a standard normal distribution.
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4 Monte Carlo evidence

In this section, we evaluate the small sample properties of the methods that we propose and

compare them with the methods existing in the literature. We consider both nested and

non-nested models�forecast comparisons, as well as forecast rationality. For each of these

tests under the null hypothesis, we allow for three choices of �, one-step-ahead and multi-

step-ahead forecasts, and multiple regressors of alternative models to see if and how the

size of the proposed tests is a¤ected in small samples. We consider the no-break alternative

hypothesis and the one-time-break alternative to compare the power of our proposed tests

with that of the conventional tests. Below we report rejection frequencies at the 5% nominal

signi�cance level to save space.

For the nested models comparison, we consider a modi�cation of the DGP (labeled �DGP

1�) that follows Clark and McCracken (2005a) and Pesaran and Timmermann (2007). Let0BB@
yt+1

xt+1

zt+1

1CCA =

0BB@
0:3 dt;T 01�(k2�1)

0 0:5 01�(k2�1)

0 0(k2�1)�1 0:5 � Ik2�1

1CCA
0BB@
yt

xt

zt

1CCA+
0BB@
uy;t+1

ux;t+1

uz;t+1

1CCA ; t = 1; :::; T � 1;
where y0 = x0 = 0, z0 = 0(k2�1)�1, [uy;t+1 ux;t+1 u

0
z;t+1]

0 iid� N(0(k2+1)�1; Ik2+1) and Ik2+1
denotes an identity matrix of dimension (k2 + 1)� (k2 + 1). We compare the following two
nested models�forecasts for yt+h:

Model 1 forecast : b�1;tyt (24)

Model 2 forecast : b
1;tyt + b
02;txt + b
03;tzt;
and both models�parameters are estimated by OLS in rolling windows of size R: Under

the null hypothesis dt;T = 0 for all t and we consider h = 1; 4; 8, k2 = 1; 3; 5 and T =

50; 100; 200; 500. We consider several horizons (h) to evaluate how our tests perform at both

the short and long horizons that are typically considered in the literature. We consider several

extra-regressors (k2) to evaluate how our tests perform as the estimation uncertainty induced

by extra regressors increases. Finally, we consider several sample sizes (T ) to evaluate how

our tests perform in small samples. Under the no-break alternative hypothesis dt;T = 0:1 or

dt;T = 0:2 (h = 1, k2 = 1 and T = 200). Under the one-time-break alternative hypothesis,

dt;T = 0:5 � I(t � �) for � 2 f40; 80; 120; 160g, (h = 1, k2 = 1 and T = 200).
For the non-nested models�comparison, we consider a modi�cation of DGP1 (labeled
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�DGP2�):0BB@
yt+1

xt+1

zt+1

1CCA =

0BB@
0:3 dt;T 0:5 01�(k�2)

0 0:5 0 01�(k�2)

0(k�1)�1 0(k�1)�1 0:5I(k�1)

1CCA
0BB@
yt

xt

zt

1CCA+
0BB@
uy;t+1

ux;t+1

uz;t+1

1CCA ; t = 1; :::; T�1;
where y0 = x0 = 0, z0 = 0(k�1)�1, and [uy;t+1 ux;t+1 u0z;t+1]

0 iid� N(0(k+1)�1; Ik+1). We compare
the following two non-nested models�forecasts for yt+h:

Model 1 forecast : b�1yt + b�2xt (25)

Model 2 forecast : b
1yt + b
02zt;
and both models�parameters are estimated by OLS in rolling windows of size R. Under the

null hypothesis dt;T = 0:5 for all t: Again, we consider several horizons, number of extra-

regressors and sample sizes: h = 1; 4; 8, k = 2; 4; 6 and T = 50; 100; 200; 500. We use the

two-sided version of our test. Note that, for non-nested models with k > 2, one might

expect that, in �nite samples, model 1 would be more accurate than model 2 because model

2 includes extraneous variables, however. Under the no-break alternative hypothesis dt;T = 1

or dt;T = 1:5 (h = 1, k = 2 and T = 200). Under the one-time-break alternative hypothesis,

dt;T = 0:5 � I(t � �) + 0:5 for � 2 f40; 80; 120; 160g, (h = 1, k = 2 and T = 200).
�DGP3�is designed for regression-based tests and is a modi�cation of the Monte Carlo

design in West and McCracken (1998). Let

yt+1 = �t;T � Ip + 0:5yt + "t+1; t = 1; :::; T;

where yt+1 is a p � 1 vector and "t+1
iid� N(0p�1; Ip). We generate a vector of variables

rather than a scalar because in this design we are interested in testing whether the forecast

error is not only unbiased but also uncorrelated with information available up to time t,

including lags of the additional variables in the model. Let y1;t be the �rst variable in the

vector yt. We estimate y1;t+h = �0yt + vt+h by rolling regressions and test E(vt+h) = 0

and E(ytvt+h) = 0 for h = 1; 4; 8 and p = 1; 3; 6. We let �t;T = 0:5 or �t;T = 1 under the

no-break alternative and �t;T = 0:5 � I(t � �) for � 2 f40; 80; 120; 160g under the one-time
break alternative (h = 1, p = 1 and T = 200).

For the forecast comparison tests with a �xed window size, we consider the following

DGP (labeled �DGP4�): yt+1 = �Rxt + "t+1; t = 1; :::; T;where xt and "t+1 are i.i.d.

standard Normal independent of each other. We compare the following two nested models�
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forecasts for yt: a �rst model is a no-change forecast model, e.g. the random walk fore-

cast for a target variable de�ned in �rst di¤erences, and the second is a model with the

regressor; that is, Model 1 forecast equals zero and Model 2 forecast equals b�t;Rxt;whereb�t;R =

 
tP

j=t�R+1
x2t

!�1
tP

j=t�R+1
xtyt. To ensure that the null hypothesis in Proposition 3

holds for one of the window sizes, R, we let �R = (R� 2)�1=2. The number of Monte

Carlo replications is 5,000. To ensure that the null hypothesis in Proposition 2 holds, we let

�R = � = 0.

The size properties of our test procedures in small samples are �rst evaluated in a series

of Monte Carlo experiments. We report empirical rejection probabilities of the tests we

propose at the 5% nominal level. In all experiments except DGP4, we investigate sample

sizes where T = 50; 100; 200 and 500 and set � = 0:05; 0:15; 0:25 and � = 1��. For DGP4,
we let P = 100; 200 and 500 and let R = 20 or 30 and R = R + 5: Note that in design

4 we only consider �ve values of R since the window size is small by assumption, and that

limits the range of values we can consider. Tables 4, 5 and 6 report results for the R"
T and

A"T tests for the nested models comparison (DGP1), the RT and AT tests for non-nested
models comparison (DGP2), and RW

T and AWT for the regression-based tests of predictive

ability (DGP3), respectively. For the multiple horizon case, in nested and regression-based

inference we use the heteroskedasticity and autocorrelation consistent (HAC) estimator with

the truncated kernel, bandwidth h� 1 and the adjustment proposed by Harvey, Leybourne
and Newbold (1997), as suggested by Clark and McCracken (2011a, Section 4), and then

bootstrap the test statistics using the parametric bootstrap based on the estimated VAR

model as suggested by Clark and McCracken (2005). Note that designs that have the same

parameterization do not have exactly the same rejection frequencies since the Monte Carlo

experiments are ran independently for the various cases we study, and therefore there are

small di¤erences due to simulation noise. The number of Monte Carlo simulations is set to

5,000 except that it is set to 500 and the number of bootstrap replications is 199 in Tables

4 and 6 when h > 1.

Table 4 shows that the nested model comparison tests (i.e., RE
T and AET tests) have good

size properties overall. Except for small sample sizes, they perform well even in the multiple

forecast horizon and multiple regressor cases. Although the e¤ect of the choice of � becomes

smaller as the sample size grows, the RE
T test tends to over-reject with smaller values of �.

The AET test is less sensitive to the choice of �. The tests implemented with � = 0:05 tend to
reject the null hypothesis too often when the sample size is small. For the size properties we
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recommend that � = 0:15. Table 5 shows that the non-nested model comparison tests (RT

and AT tests) also have good size properties although they tend to be slightly under-sized.
They tend to be more under-sized as the forecast horizon grows, thus suggesting that the test

is less reliable for horizons greater than one period. The RT test tends to reject too often

when there are many regressors (p = 6). Note that, by showing that the test is signi�cantly

oversized in small samples, the simulation results con�rm that for non-nested models with

p > 1 model 1 should be more accurate than model 2 in �nite samples, as expected. Table

6 shows the size properties of the regression-based tests of predictive ability (RW
T and AWT

tests). The tests tend to reject more often as the the forecast horizon increases and less often

as the number of restrictions increases.

Table 7 reports empirical rejection frequencies for DGP4. The left panel shows results

for the GWT test, eq. (23), reported in the column labeled �GWT test�. The table shows

that our test is conservative when the number of out-of-sample forecasts P is small, but

otherwise it is controlled. Similar results hold for the CWT test discussed in Proposition 2.

Next, we consider three additional important issues. First, we evaluate the power prop-

erties of our proposed procedure in the presence of departures from the null hypothesis in

small samples. Second, we show that traditional methods, which rely on an �ad-hoc�window

size choice, may have no power at all to detect predictive ability. Third, we demonstrate

traditional methods are subject to data mining (i.e. size distortions) if they are applied to

many window sizes without correcting the appropriate critical values.

Tables 8, 9 and 10 report empirical rejection rates for the Clark and McCracken�s (2001)

test under DGP1 with h = 1 and p = 0, the non-nested model comparison test of Diebold and

Mariano (1995), West (1996) and McCracken (2000) under DGP2 with h = 1 and p = 1, and

West and McCracken�s (1998) regression-based test of predictive ability under DGP3 with

h = 1 and p = 1, respectively. In each table, the columns labeled �Tests Based on Single

R� report empirical rejection rates implemented with a speci�c value of R which would

correspond to the case of a researcher who has chosen one �ad-hoc�window size R, has not

experimented with other choices, and thus might have missed predictive ability associated

with alternative values of R. The columns labeled �Data Mining�report empirical rejection

rates incurred by a researcher who is searching across all values of R 2 f30; 31; :::; 170g (�all
R�) and across �ve values, R 2 f20; 40; 80; 120; 160g. That is, the researcher reports results
associated with the most signi�cant window size without taking into account the search

procedure when doing inference. The critical values used for these conventional testing

procedures are based on Clark and McCracken (2001) and West and McCracken (1998)
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for Tables 8 and 10 and are equal to 1.96 for Table 9. Note that to obtain critical values

for the ENCNEW test and regression-based test of predictive ability that are not covered

by their tables, the critical values are estimated from 50,000 Monte Carlo simulations in

which the Brownian motion is approximated by normalized partial sums of 10,000 standard

normal random variates. For the non-nested model comparison test, parameter estimation

uncertainty is asymptotically irrelevant by construction and the standard normal critical

values can be used. The nominal level is set to 5%, � = 0:15, � = 0:85; and the sample size

is 200.

The �rst row of each panel reports the size of these testing procedures and shows that all

tests have approximately the correct size except the data mining procedure, which has size

distortions and leads to too many rejections with probabilities ranging from 0.175 to 0.253.

Even when only �ve window sizes are considered, data mining leads to falsely rejecting the

null hypothesis with probability more than 0.13. This implies that the empirical evidence

in favor of the superior predictive ability of a model can be spurious if evaluated with the

incorrect critical values. Results in Inoue and Rossi (2012, Panel A in Tables 8, 9 and 10)

show that the conventional tests and proposed tests have power against the standard no-

break alternative hypothesis. Unreported results show that while the power of the RE
T test

is increasing in �, it is decreasing in � for the RT and RW
T tests. The power of the AET , AT

and AWT tests is not sensitive to the choice of �.

The tables demonstrate that, in the presence of a structural break the tests based on

an �ad-hoc�rolling window size can have low power depending on the window size and the

break location. The evidence highlights the sharp sensitivity of power of all the tests to

the timing of the break relative to the forecast evaluation window, and shows that, in the

presence of instabilities, our proposed tests tend to be more powerful than some of the tests

based on an ad-hoc window size, whose power properties crucially depend on the window

size. Against the break alternative, the power of the proposed tests tend to be decreasing

in �. Based on these size and power results we recommend � = 0:15 in Section 2, which

provides a good performance overall.

Finally, we show that the e¤ects of data mining are not just a small sample phenomenon.

We quantify the e¤ects of data mining asymptotically by using the limiting distributions

of existing test statistics. We design a Monte Carlo simulation where we generate a large

sample of data (T=2000) and use it to construct limiting approximations to the test statistics

described in Appendix B in Inoue and Rossi (2012). For example, in the non-nested models

comparison case with p = 1, the limiting distribution of the Diebold and Mariano (1995) test
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statistic for a given � = lim
T!1

R
T
is (1� �)�1=2 jB (1)�B (�) j; the latter can be approximated

in large samples by
�
1� R

T

��1=2 jP�1=2 TP
t=R

�tj, where �t � iidN (0; 1). We simulate the

latter for many window sizes R and then calculate how many times, on average across

50,000 Monte Carlo replications, the resulting vector of statistics exceed the standard normal

critical values for a 5% nominal size. Table 11 reports the results, which demonstrate that

the over-rejections of traditional tests when researchers data snoop over window sizes persist

asymptotically.

5 Empirical evidence

The poor forecasting ability of economic models of exchange rate determination has been

recognized since the works by Meese and Rogo¤ (1983a,b), who established that a random

walk forecasts exchange rates better than any economic models in the short run. Meese and

Rogo¤�s (1983a,b) �nding has been con�rmed by several researchers and the random walk is

now the yardstick of comparison for the evaluation of exchange rate models. Recently, Engel,

Mark and West (2007) and Molodtsova and Papell (2009) documented empirical evidence

in favor of the out-of-sample predictability of some economic models, especially those based

on the Taylor rule. However, the out-of-sample predictability that they report depends on

certain parameters, among which the choice of the in-sample and out-of-sample periods and

the size of the rolling window used for estimation. The choice of such parameters may

a¤ect the outcome of out-of-sample tests of forecasting ability in the presence of structural

breaks. Rossi (2006) found empirical evidence of instabilities in models of exchange rate

determination; Giacomini and Rossi (2010) evaluated the consequences of instabilities in the

forecasting performance of the models over time; Rogo¤ and Stavrakeva (2008) also question

the robustness of these results to the choice of the starting out-of-sample period. In this

section, we test the robustness of these results to the choice of the rolling window size. It

is important to notice that it is not clear a-priori whether our test would �nd more or less

empirical evidence in favor of predictive ability. In fact, there are two opposite forces at

play. By considering a wide variety of window sizes, our tests might be more likely to �nd

empirical evidence in favor of predictive ability, as our Monte Carlo results have shown.

However, by correcting statistical inference to take into account the search process across

multiple window sizes, our tests might at the same time be less likely to �nd empirical

evidence in favor of predictive ability.
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Let st denote the logarithm of the bilateral nominal exchange rate, where the exchange

rate is de�ned as the domestic price of foreign currency. The rate of growth of the exchange

rate depends on its deviation from the current level of a macroeconomic fundamental. Let

ft denote the long-run equilibrium level of the nominal exchange rate as determined by the

macroeconomic fundamental, and zt = ft � st. Then,

st+1 � st = �+ �zt + "t+1 (26)

where "t+1 is an unforecastable error term.The �rst model we consider is the Uncovered

Interest Rate Parity (UIRP). In the UIRP model,

fUIRPt = (it � i�t ) + st; (27)

where (it � i�t ) is the short-term interest di¤erential between the home and the foreign coun-
tries.

The second model we consider is a model with Taylor rule fundamentals, as in Molodtsova

and Papell (2009) and Engel, Mark and West (2007). Let �t denote the in�ation rate in the

home country, ��t denote the in�ation rate in the foreign country, � denote the target level of

in�ation in each country, ygapt denote the output gap in the home country and ygap�t denote

the output gap in the foreign country. Note that the output gap is the percentage di¤erence

between actual and potential output at time t, where the potential output is the linear time

trend in output, and that Taylor rule speci�cation is one for which Papell and Molodtsova

(2009) �nd the least empirical evidence of predictability so our results can be interpreted as

a lower bound on the predictability of Taylor rules that they consider. Since the di¤erence in

the Taylor rule of the home and foreign countries implies it�i�t = � (�t � ��t )+
 (y
gap
t � ygap�t ),

we have that the latter determines the long run equilibrium level of the nominal exchange

rate:

fTAY LORt = � (�t � ��t ) + 
 (y
gap
t � ygap�t ) + st: (28)

The benchmark model, against which the forecasts of both models (27) and (28) are

evaluated, is the random walk, according to which the exchange rate changes are forecast

to be zero. We chose the random walk without drift to be the benchmark model because it

is the toughest benchmark to beat (see Meese and Rogo¤, 1983a,b). We use monthly data

from the International Financial Statistics database (IMF) and from the Federal Reserve

Bank of St. Louis from 1973:3 to 2008:1 for Japan, Switzerland, Canada, Great Britain,

Sweden, Germany, France, Italy, the Netherlands, and Portugal. Data on interest rates were

incomplete for Portugal and the Netherlands, so we do not report UIRP results for these
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countries. The former database provides the seasonally adjusted industrial production index

for output, and the 12-month di¤erence of the CPI for the annual in�ation rate, and the

interest rates. The latter provides the exchange rate series. The two models�rolling forecasts

(based on rolling windows calculated over an out-of-sample portion of the data starting in

1983:2) are compared to the forecasts of the random walk, as in Meese and Rogo¤ (1983a,b).

We focus on the methodologies in Section 2.2 since the models are nested. In our exercise,

� = 0:15, which implies R = �T and R = (1� �)T ; the total sample size T depends on the
country, and the values of R and R are shown on the x-axes in Figures 1 and 2, and o¤er a

relatively large range of window sizes, all of which are su¢ ciently large for asymptotic theory

to provide a good approximation.

Empirical results for selected countries are shown in Table 12 and Figure 1 (see Inoue and

Rossi, 2012, for detailed results on other countries/models). The column labeled �Test Based

on Single R�in Table 12 reports the empirical results in the literature based on a window

size R equal to 120, the same window size used in Molodtsova and Papell (2009). According

to the �Test Based on Single R;�the Taylor model signi�cantly outperforms a random walk

for Canada and the U.K. at 5% signi�cance level, whereas the UIRP model outperforms

the random walk for Canada and Italy at the 5% signi�cance level. According to our tests,

instead, the empirical evidence in favor of predictive ability is much more favorable. Figure

1 reports the estimated Clark and McCracken�s (2001) test statistic for the window sizes

we consider for the UIRP model. Note that the R"
T test rejects if, for any window size R

(reported on the x-axis), the test statistic is above the critical value line (dotted lines). In

particular, the predictive ability of the economic models tends to show up at smaller window

sizes, as the �gures show. This suggests that the empirical evidence in favor of predictive

ability may be driven by the existence of instabilities in the predictive ability, for which

rolling windows of small size are advantageous. One should also be aware of the possibility

of data snooping over country-model pairs; we refer to Molodtsova and Papell (2009).

6 Conclusions

This paper proposes new methodologies for evaluating economic models�forecasting perfor-

mance that are robust to the choice of the estimation window size. These methodologies are

noteworthy since they allow researchers to reach empirical conclusions that do not depend on

a speci�c estimation window size. We show that tests traditionally used by forecasters su¤er

from size distortions if researchers report, in reality, the best empirical result over various
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window sizes, but without taking into account the search procedure when doing inference

in practice. Traditional tests may also lack power to detect predictive ability when imple-

mented for an "ad-hoc" choice of the window size. Finally, our empirical results demonstrate

that the recent empirical evidence in favor of exchange rate predictability is even stronger

when allowing a wider search over window sizes.
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Tables and Figures
Table 1. Critical Values for Non-Nested Model Comparisons

Panel A. Two-Sided Critical Values Panel B. One-Sided Critical Values

RT test AT test RT test AT test

� 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

0.15 2.465 2.754 3.337 1.462 1.739 2.292 2.127 2.458 3.106 1.134 1.454 2.073

0.20 2.398 2.697 3.282 1.489 1.771 2.345 2.057 2.399 3.059 1.158 1.488 2.116

0.25 2.333 2.641 3.228 1.512 1.809 2.394 1.986 2.332 3.007 1.179 1.510 2.167

0.30 2.264 2.577 3.159 1.539 1.838 2.433 1.920 2.261 2.953 1.201 1.535 2.205

0.35 2.186 2.498 3.099 1.564 1.864 2.475 1.838 2.186 2.862 1.225 1.560 2.240

Notes to Table 1. � is the fraction of the smallest window size relative to T, � = limT!1(R=T ).

The critical values are obtained by Monte Carlo simulation using 50,000 replications, approximating

Brownian motions by normalized partial sums of 10,000 standard normals.

Table 2. Critical Values for Nested Model Comparisons Using ENCNEW

Rolling Regressions Recursive Regressions

RE
T test AET test RE

T test AET test
k2 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

1 3.938 5.210 8.124 1.060 1.721 3.434 2.042 3.063 5.620 0.862 1.455 2.861

2 5.623 7.194 10.710 1.602 2.446 4.370 3.122 4.313 7.243 1.315 2.019 3.644

3 6.908 8.676 12.614 2.036 2.987 5.015 3.854 5.200 8.406 1.662 2.427 4.194

4 7.941 9.980 14.451 2.376 3.373 5.597 4.508 5.975 9.501 1.916 2.789 4.701

5 8.892 11.089 15.748 2.665 3.763 6.074 5.050 6.602 10.227 2.165 3.072 5.172

6 9.703 12.029 17.131 2.901 4.074 6.632 5.575 7.201 11.009 2.370 3.331 5.438

7 10.466 12.968 18.405 3.151 4.388 7.029 6.037 7.795 11.737 2.543 3.621 5.755

8 11.225 13.831 19.489 3.360 4.671 7.432 6.476 8.305 12.386 2.731 3.852 6.152

9 11.888 14.585 20.525 3.554 4.946 7.807 6.894 8.829 12.984 2.932 4.102 6.436

10 12.502 15.408 21.415 3.728 5.179 8.172 7.292 9.240 13.598 3.065 4.292 6.700

11 13.105 16.098 22.365 3.903 5.386 8.552 7.614 9.581 14.198 3.210 4.473 7.002

12 13.728 16.787 23.404 4.079 5.614 8.893 7.942 10.075 14.636 3.350 4.646 7.276

Notes. k2 is the number of additional regressors in the nesting model. Critical values are obtained by 50,000

Monte Carlo simulations, approximating Brownian motions by normalized partial sums of 10,000 std. normals.
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Table 3. Critical Values for Regression-Based Forecasts Tests

Rolling Regressions Recursive Regressions

RW
T test AWT test RW

T test AWT test

p 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

1 6.023 7.556 10.909 2.335 3.192 5.291 0.866 0.871 0.880 0.511 0.514 0.520

2 8.710 10.376 14.182 4.032 5.103 7.668 1.723 1.730 1.743 1.015 1.020 1.028

3 10.917 12.773 16.559 5.596 6.796 9.543 2.579 2.587 2.602 1.519 1.524 1.535

4 12.889 14.832 19.144 6.982 8.296 11.240 3.433 3.443 3.460 2.022 2.028 2.040

5 14.717 16.761 21.272 8.394 9.798 12.859 4.287 4.298 4.318 2.525 2.532 2.545

6 16.506 18.595 23.201 9.685 11.249 14.450 5.141 5.152 5.174 3.027 3.035 3.050

7 18.207 20.397 25.005 10.987 12.604 15.961 5.994 6.007 6.031 3.529 3.538 3.554

8 19.860 22.116 26.943 12.238 13.937 17.591 6.847 6.861 6.887 4.031 4.041 4.057

9 21.452 23.852 28.776 13.519 15.291 19.063 7.700 7.714 7.742 4.533 4.543 4.561

10 23.021 25.479 30.488 14.770 16.569 20.384 8.552 8.567 8.597 5.035 5.045 5.065

11 24.474 27.037 32.404 15.955 17.854 21.819 9.405 9.421 9.451 5.537 5.548 5.567

12 26.018 28.607 34.135 17.151 19.131 23.354 10.257 10.274 10.305 6.039 6.049 6.070

Notes. p is the number of restrictions. The critical values are obtained by Monte Carlo simulation using 50,000

replications in which Brownian motions are approximated by normalized partial sums of 10,000 standard normals.

Table 4. Size of Nested Model Comparison Tests � DGP1

RE
T test AET test

� .05 .15 .25 .15 .15 .15 .15 .05 .15 .25 .15 .15 .15 .15

h 1 1 1 4 8 1 1 1 1 1 4 8 1 1

T k2 1 1 1 1 1 3 5 1 1 1 1 1 3 5

50 .093 .080 .074 .085 .083 .065 .036 .067 .067 .064 .056 .038 .057 .046

100 .098 .067 .061 .070 .078 .069 .056 .058 .058 .057 .054 .051 .056 .053

200 .070 .063 .056 .070 .065 .061 .056 .054 .054 .051 .059 .051 .053 .054

500 .058 .051 .053 .066 .062 .055 .052 .052 .052 .053 .055 .059 .047 .048

Notes to Table 4. h is the forecast horizon, k2 + 1 is the number of regressors in the nesting forecasting

model. The nominal signi�cance level is 0.05. The number of Monte Carlo replications is 5,000 for h = 1

and 500 for h > 1. When the parametric bootstrap critical values are used with the number of bootstrap

replications set to 199.
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Table 5. Size of Non-Nested Model Comparison Tests � DGP2

RT test AT test
� .05 .15 .25 .15 .15 .15 .15 .05 .15 .25 .15 .15 .15 .15

h 1 1 1 4 8 1 1 1 1 1 4 8 1 1

T k 2 2 2 2 2 4 6 2 2 2 2 2 4 6

50 .010 .017 .019 .000 .000 .071 .375 .021 .029 .031 .000 .000 .038 .100

100 .018 .024 .023 .000 .000 .058 .278 .036 .039 .040 .003 .000 .046 .084

200 .023 .029 .031 .004 .000 .049 .127 .040 .041 .040 .013 .001 .045 .060

500 .031 .036 .036 .024 .005 .040 .064 .043 .042 .044 .033 .004 .046 .055

Notes to Table 5. We consider the two-sided version of our tests RT and AT . h is the forecast horizon, k is

the number of regressors in the larger forecasting model. The nominal signi�cance level is 0.05. The number

of Monte Carlo replications is 5,000.

Table 6. Size of Regression-Based Tests of Predictive Ability � DGP3

RW
T test AWT test

� .05 .15 .25 .15 .15 .15 .15 .05 .15 .25 .15 .15 .15 .15

h 1 1 1 4 8 1 1 1 1 1 4 8 1 1

T p 1 1 1 1 1 3 5 1 1 1 1 1 3 5

50 .149 .027 .024 .048 .064 .022 .010 .044 .038 .040 .042 .064 .024 .014

100 .027 .031 .033 .030 .040 .046 .016 .042 .046 .047 .036 .050 .038 .016

200 .034 .037 .038 .058 .042 .036 .056 .040 .043 .044 .064 .054 .040 .048

500 .041 .039 .040 .052 .040 .036 .070 .045 .047 .046 .050 .050 .040 .046

Notes to Table 6. h is the forecast horizon, p is the number of restrictions being tested. The nominal

signi�cance level is 0.05. The number of Monte Carlo replications is 5,000 for h = p = 1 and 500 for h > 1

or p > 1. When the parametric bootstrap critical values are used with the number of bootstrap replications

set to 199.

Table 7. Size of Fixed Window Tests �DGP 4

GWT Test CWT Test

P R=20 R=30 R=20 R=30

100 0.0824 0.1140 0.0546 0.0652

200 0.0676 0.0936 0.0460 0.0444

500 0.0362 0.0638 0.0416 0.0480

Notes to Table 7. The table reports empirical rejection frequencies of the GWT test, eq. (23), implemented

with R=20 or 30, and R=R+5 and of the CWT test, eq. (22). The nominal signi�cance level is 0.05. The

number of Monte Carlo replications is 5,000.
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Table 8. Rejection Frequencies of Nested Model Comparison Tests � DGP1

One-Time Break Alternative

Tests Based on Single R Data Mining Proposed Tests

� 10 20 40 80 120 160 all R �ve R RET Test AET Test
0 .071 .063 .058 .052 .055 .057 .199 .145 .063 .054

40 .467 .445 .107 .085 .077 .096 .493 .502 .275 .075

80 .860 .925 .902 .232 .207 .232 .975 .959 .935 .647

120 .978 .993 .995 .975 .332 .331 1.000 .999 .998 .985

160 .997 1.000 1.000 1.000 0.980 0.400 1.000 1.000 1.000 1.000

Table 9. Rejection Frequencies of Non-nested Model Comparison Tests � DGP2

One-Time Break Alternative

Tests Based on Single R Data Mining Proposed Tests

� 10 20 40 80 120 160 all R �ve R RT Test AT Test
0 .051 .045 .044 .043 .041 .042 .175 .129 .029 .041

40 .111 .073 .043 .039 .041 .041 .187 .161 .031 .034

80 .380 .332 .155 .045 .038 .038 .247 .413 .080 .025

120 .695 .686 .518 .117 .048 .042 .562 .753 .304 .050

160 .890 .903 .832 .523 .138 .058 .843 .931 .654 .394

Table 10. Rejection Frequencies of Regression-Based Tests of Predictive Ability � DGP3

One-Time Break Alternative

Tests Based on Single R Data Mining Proposed Tests

� 10 20 40 80 120 160 all R �ve R RWT AWT
0 .026 .037 .046 .048 .053 .051 .253 .136 .037 .047

40 .035 .040 .034 .037 .042 .035 .198 .112 .022 .038

80 .146 .159 .089 .020 .018 .014 .211 .193 .022 .038

120 .431 .494 .352 .073 .006 .006 .513 .516 .108 .059

160 .842 .903 .849 .495 .089 .003 .932 .925 .493 .410

Notes to Tables 8-10. � is the break date with � = 0 corresponding to the null hypothesis. We set

h = 1;�= 0:15, �= 0:85; T = 200 and p = 0 in Table 8 and p = 1 in Tables 9-10. The �ve values

of R used in the last column are R = 20; 40; 80; 120; 160. The number of Monte Carlo replications

is set to 5,000.
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Table 11. Data Mining �Asymptotic Approximation Results

� DMWT W(r)
T ENCNEWT

p = 1 2 3 4 1 2 3 4

0.15 0.2604 0.2604 0.2712 0.2750 0.2784 0.1023 0.1251 0.1347 0.1305

0.20 0.0963 0.2296 0.2391 0.2412 0.2462 0.1161 0.1264 0.1224 0.2017

0.25 0.0928 0.2017 0.2102 0.2112 0.2166 0.0903 0.1124 0.1215 0.1178

0.30 0.1761 0.1761 0.1842 0.1838 0.1881 0.0903 0.1087 0.1170 0.1148

0.35 0.1513 0.1513 0.1584 0.1581 0.1606 0.0853 0.0996 0.1075 0.1066

Notes to Table 11: The table shows asymptotic rejections of nominal 5% tests for non-nested models

(DMW T ), forecast optimality (W
(r)
T ) and nested models (ENCNEWT ) repeated over sequences of

windows sizes equal to [�T ]; [�T + 1]; :::; [(1��)T ]. Asymptotic approximations to the tests statistics
are based on Brownian motion approximation with T = 10; 000. The number of Monte Carlo replications

is 5,000.

Table 12. Empirical Results

RT Test AT Test �Test Based on Single R�

UIRP Taylor UIRP Taylor UIRP Taylor

Japan 10.43** 7.30** -3.20 -4.59 -5.88 2.55

Canada 73.06** 44.44** 7.13** 15.75** 15.62** 30.07**

Switzerland 16.59** - - -1.00 - - -15.76 - -

U.K. 9.06** 22.26** -11.65 -1.68 -20.58 6.88**

France -1.10 -0.01 -12.33 -9.57 -13.49 -14.29

Germany 3.83 0.87 -11.91 -15.54 -17.28 -21.30

Italy 24.99** 27.40** -2.07 -5.33 12.31** -6.88

Sweden 57.79** 42.26** -2.38 5.58** -22.28 -12.70

The Netherlands - - 7.59** - - -2.70 - - 1.35

Portugal - - 109.37** - - 24.30** - - -10.43

Notes to Table 12. Two asterisks denote signi�cance at the 5% level, and one asterisk denotes signi�cance

at the 10% level. For the RT and AT tests we used �= 0:15 (the value of R will depend on the sample

size, which is di¤erent for each country, and it is shown in Figures 1 and 2). For the �Test Based on Single

R�, we implemented Clark and McCracken�s (2001) test using R = 120; its one-sided critical values at the

5% and 10% signi�cance levels are 3.72 and 2.65.
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Figure 1
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Figure 1 plots the estimated Clark and McCracken (2001) ENCNEW test statistic for

comparing the UIRP model with the random walk for the window sizes we consider (reported

on the x-axis), together with 5% and 10% critical values of the RE
T test statistic. The test

rejects when the largest value of the Clark and McCracken�s (2001) test is above the critical

value line. Countries are Canada (CAN), France (FRA), United Kingdom (GBP), Germany

(GER), Italy (ITA), Japan (JAP).
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