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Abstract

The paper proposes a technique to jointly tests for groupings of unknown size

in the cross sectional dimension of a panel and estimates the parameters of each

group, and applies it to identifying convergence clubs in income per-capita. The

approach uses the predictive density of the data, conditional on the parameters of

the model. The steady state distribution of European regional data clusters around

four poles of attraction with di�erent economic features. The distribution of income

per-capita of OECD countries has two poles of attraction and each group has clearly

identi�able economic characteristics.
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1 INTRODUCTION 1

We share the uncommonness of being di�erent. J.P. Roche

1 Introduction

Recent theories of growth and development have suggested that the distribution of income

per-capita of countries and/or regions may display convergence clubs, i.e. a tendency for

the steady states distribution to cluster around a small number of poles of attraction (see

e.g. Ben David (1994), Quah (1996a), or Galor (1996)). This tendency may be induced

by several factors: the existence of some threshold level in the endowment of strategic
factors of production; non-convexities or increasing returns; similarities in preferences,
technologies; government policies, which become more similar over time within certain

groups (e.g. EEC or East Asian countries). While there is anecdotal evidence supporting

the view that clustering is an important feature of world income data, to the best of

my knowledge, only Durlauf and Johnson (1995) using regression tree analysis, Quah

(1996a) and Desdoigts (1998) using nonparametric methods, have attempted to formally

document whether this tendency exits in the actual data.

This paper proposes a technique to examine whether the distribution of income per-

capita displays convergence clubs. The approach is general, determines the number of

groups and the location of the break points when the appropriate ordering of the units

in the cross section is unknown and, at the same time, allows to estimate the parameters

characterizing the distribution of each group in a uni�ed manner. The approach is based

on the predictive density (marginal likelihood) of the data, conditional on the parameters,

and has appealing features for both Bayesian and classical analysts.

The suggested technique can be viewed as a natural extension of the standard testing
approach used to determine the number of heterogeneous groups in a cross section (see
e.g. Goldfeld and Quandt test) when the number of groups, the location of the breaks

and the ordering of units are unknown. However, instead of assuming that the regression
coe�cients are the same for all units belonging to one group, as it is the case with switching

regressions or regression tree analyses, I allow for a further layer of heterogeneity within

groups. This second layer of heterogeneity takes the form of an exchangeable prior which

restricts the coe�cients of the units in a group to have the same distribution. Hence, while

standard exchangeable approaches assume that the coe�cients of the statistical model of

all cross-sectional units have the same distribution, I restrict the behavior of coe�cients

within a group, but I allow the distribution of the coe�cients of units in di�erent groups to

di�er. Because exchangeability over the entire cross-section implies that the steady state
distribution of income per-capita is unimodal, while exchangeability within groups implies

that the steady state distribution may display multiple basins of attraction, testing for

the presence of convergence clubs can be fruitfully examined by checking which of these
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two assumptions is more appropriate.

Once the optimal number of groups and the location of the break points in the cross

section have been established, I provide a simple way to estimate the parameters of each

group and to conduct inference. The approach I employ lies within the Empirical Bayes

tradition: I use predictive densities to estimate the parameters and posterior analysis to

draw conclusions about functions of the coe�cients of the model. Posterior inference is

appealing because it gives us a compact way to summarize both subjective and objec-

tive uncertainty about economically interesting functions of the coe�cients of the model

(convergence rates, long run multipliers, steady states distribution, etc.).

The methodological contribution of this paper is linked to a number of articles, both

in the classical and the Bayesian tradition, testing for the existence of a unknown break

points in time series, see e.g. Ploberger, et. al. (1989), Bai (1997) and Polasek and Rei

(1997) and to the Empirical Bayes tradition of constructing posterior estimates of the

coe�cients of a model by plugging-in ML type-II estimates of the parameters of the prior

(see Morris (1983), Berger (1985) or Efron (1996)). The approach is also related to those

of Forni and Reichlin (1997), who attempt to estimate a reduced number of common latent

factors from large dynamic cross sectional data, and of Hansen (1997a,b), who examines

estimation and testing problems in threshold models for cross sections, time series or static

panels. The most signi�cant di�erence between the approach of the paper and the one of

the latter author, apart from the classical vs. Bayesian perspective, is that in Hansen's

work the threshold between groups is observable and exogenous - so that the problem

is to obtain useful estimates of the threshold parameter - while here the threshold index

is either unknown or unobservable and could even be endogenous. Finally, the testing

procedure shares similarities with classi�cation/cluster analyses (see e.g. Mardia, Kent

and Bibby (1980)). Three features distinguish the proposed approach from existing ones:

I use regression models with serially correlated data; I allow the number of break points

to be unknown; and I assign units to groups so as to maximize the predictive ability of

the model.

I employ European regional income per-capita data from the NUTS2 data set of Eu-

rostat and OECD national income per-capita from the Summer and Heston data set to

determine whether the income distribution shows any tendency toward club convergence.

Recent theories of economic growth have suggested that the initial conditions of income

per-capita and of the average human capital; the dispersion of the distribution of income

and education within units; and the geographical location may determine the position of

a unit in the steady state distribution and the club it will join. Unfortunately, most of this

information is not available at regional level. Therefore a search for clubs is conducted

ordering units in the cross section according to �ve di�erent criteria: (i) the ranking of

income per-capita relative to European average prevailing in a pre-sample period, with

poor units coming �rst; (ii) the magnitude of the average per-capita income relative to the
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European average in the sample, with poor units coming �rst; (iii) the magnitude of the

average growth rate of income in the sample, with poor units coming �rst; (iv) the ranking

of income per-capita in the pre-sample period, scaling per-capita income by the national

average; (v) the ranking of income per-capita in the pre-sample period, scaling per-capita

income of "southern" regions (Mediterranean regions and Ireland) and of "northern" re-

gions (the others) by their own respective average. At country level, the initial conditions

of income per-capita and human capital and their within-country dispersions are available

so that it is possible to examine the likelihood of convergence clubs using these indicators

to order the data. In addition, I search for groupings along size and geographical dimen-

sions: putting G-3 countries �rst and then the rest, ordered according to the size of the

economies; putting European countries before the rest, with Mediterranean countries and
Ireland preceding other European countries in the order.

I �nd that the ordering based on the ranking of the initial conditions of income per-

capita scaled by the European average in the pre-sample period is the one which maximize

the predictive power of the model for both data sets. With that ordering, there is a

natural clustering of units in four groups of regional income per-capita and two groups of

national income per-capita. In both cases clubs are characterized by di�erent parameters

controlling the speed of adjustment to the steady state and the mean level of per-capita

steady state income relative to the average. More precisely, poor units converge faster to

their steady state than rich ones and they tend to cluster around a pole of attraction which

is substantially below the average (see also Quah (1996b)). The dispersion of steady states

around each basin of attraction is signi�cant suggesting that clustering is more prevalent

than convergence even within groups. I show that even though groups have di�erent long

run mobility indices, there is substantial immobility in the ranking of units within groups,

con�rming the strong persistence in inequality found by Canova and Marcet (1995). As a

consequence of the persistence of the initial income characteristics and of the immobility

in ranking, the steady state distribution of income per-capita will become polarized. Since
poor units are also the ones with low initial average human capital; with distributions of

income and education which are more polarized; and are geographically or economically

located in the "South" of the industrialized world, the results provide a bleak picture over

the possibility of equalizing income per-capita both in Europe and in OECD countries

over the near future.

The rest of the paper is organized as follows. The next section describes the details of

the testing approach to �nd groups in the cross sectional dimension of a panel when the

number of groups, the location of the break points and the ordering of units is unknown.

Section 3 provides a technique to estimate the parameters and to conduct posterior in-

ference on functions of the coe�cients of the dynamic model. Section 4 provides the link
between growth theory and the proposed econometric procedure, emphasizing measurable

factors which may determine club convergence. Section 5 examines the existence of con-
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vergence clubs in European regional and OECD national income per-capita data. Section

6 concludes.

2 The Testing Procedure

The starting point of the analysis is the a-priori belief that there may be signi�cant

heterogeneities in the cross section of a panel and a natural clustering of units around

certain poles of attraction, in the sense that the coe�cients of the statistical model are

more similar within each group than across groups. For example, if units i and j belong to

a group, the vector of coe�cients of the model for the two units may have the same mean

and the same dispersion. However, if units i and j do not belong to the same group, the

vector of coe�cients of the two units may have di�erent means and di�erent dispersions.

For the sake of generality, I assume that the ordering of cross sectional units which

naturally gives rise to clustering is unknown. In practice, clustering in income per-capita

may be linked to geographical, economic or sociopolitical factors and modern growth

theory provides a restricted set of ordering to be examined. Let N be the size of the cross

section, T the size of the time series, and m = 1; 2; : : :N ! the particular ordering of the

units of the cross section. It is assumed that there may be q = 1;2; : : : Q break points

in the cross section, Q given. Each of the resulting q + 1 groups is characterized by a

statistical model of the form:

Yit = �i + �i(`)Yit�1 + �i(`)Wt�1 + uit (1)

�i = �p + �
p
i (2)

where i = 1; : : : ; np(m); p = 1; : : : ; q + 1, uit � (0; �2ui
); �pi � (0;�p); �i(`) and �i(`), are

polynomials in the lag operator of order r and d, �i = [�i; �i1; : : : �ir; �i1; : : : ; �id] is the

vector of coe�cients of unit i; np(m) is the number of units in group p, given the m-th

ordering of the cross section,
P

p n
p(m) = N . I assume that Yit is a vector of dimension s

for each unit i, while Wt�1 is a vector of exogenous variables of dimension v a�ecting all

units of the cross section with a period lag. In (2), I assume that the vector of coe�cients

for each i is random and that the coe�cients of the np(m) units belonging to group p have

the same mean and same covariance matrix. This situation will be termed exchangeable

structure within group. Furthermore, I assume that the exchangeable structure may di�er

across groups: the coe�cients of units belonging to di�erent groups may be drawn from

distributions with di�erent parameters. Equations (1)-(2) therefore captures in a simple

way the idea that there may be clustering of units within groups but that groups may

drift apart over time, implying heterogeneous dynamics in the cross section. For the rest

of the paper I refer to �p and �p as the hyperparameters of the model.

Model (1)-(2) is su�ciently general to include several models studied in the panel data

literature as special cases. For example, a standard switching regression model is obtained
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by setting �
p
i = 0; 8i. A �xed e�ect model is obtained by restricting �i = � and �

p
i = 0; 8i

while a random e�ect model is obtained by setting �i = � and �
p
i = [�

p
i1; 0; : : : ; 0]. Also,

for future reference, I take the alternative to (1)-(2) to be a model with homogeneous

dynamics in the cross section. In this case Q = 1 and I replace equation (2) with

�i = � + �i i = 1; : : :N (3)

where �i � N(0;�). In other words, in the alternative � and � are the same for all i, so

that there is an exchangeable structure across all units of the cross section. The limiting

case of this alternative is a pooled model which can be obtained by setting �
p
i = 0; 8i.

The task of the paper is two fold. First, I am interested in providing a framework for
verifying the hypothesis that there are heterogeneities in the cross section in a situation
where the number of groups, the location of the breaks (and consequently the number

np(m) units in each group) and the permutation m, which naturally give rise to the

clustering, are unknown. Once I have established the number of groups, the location of

the breaks and the ordering of the cross section optimally, I will be concerned, at a second

stage, with the problem of estimating the hyperparameters (�p;�p) for each p and �2

ui

for each i. These parameters are assumed to be unknown to the investigator and are

needed to construct posterior estimates of the �i which can then be used for inference and

forecasting.
Let Y be a (N � T � s) � 1 vector of the LHS variables in (1) ordered to have the N

cross sections for each t = 1; : : : T; s times, X be a (N � T � s) � (N � k) matrix of the

regressors, k = s � r + v � d + 1, � be a (N � k) � 1 vector of coe�cients of the model,

U a (N � T � s) � 1 vector of disturbances, �0 a (q + 1) � k � 1 vector of means of �, A

be a (N � k)� (q + 1) � k matrix, A = diagfApg, where Ap has the form �
N
Ik where Ik

is a k � k identity matrix and � is a np(m) � 1 vector of ones. For given m, we rewrite
(1)� (2) as:

Y = X� + U U � (0;�u) (4)

� = A�0 + E E � (0;�E) (5)

where the dimension of �u is (N�T �s)�(N�T �s) and �E = diagf�pg is a (N�k)�(N�k)

matrix. Using (5) into (4) we arrive at

Y = ~X�0 +W W � (0;�W ) (6)

where ~X = X �A and �W = X�EX
0 +�u. In (6) I have eliminated (integrated out) the

vector of coe�cients � and expressed the dependent variable Y as a linear combination

of the X 's and of the hyperparameters �0 with errors which have an heteroschedastic

structure. Since q+ 1 << N , this operation has e�ectively reduced the dimensionality of
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the model. For the moment assume that �0; �E; �u are known. Our approach to group

units proceeds in several steps.

First, given an ordering of the units of the cross section, I examine how many groups

there are using the sequential testing approach described below. Second, given an ordering

of units and the optimal number of groups I attempt to �nd the location of the break points

by maximizing the predictive density (marginal likelihood) of the model with respect to

the location of the breaks. Third, I iterate on the �rst two steps, varying the ordering of

units in the cross section. I choose as optimal the ordering that maximizes the predictive

density.

To be precise, let L(Y jH0) be the predictive density of the data under the assump-

tion that the hyperparameters are the same in each subgroup, i.e. �0 = �1
N


0 where

�1 is a (q + 1) � 1 vector of ones and 
0 a k � 1 vector, and �p = �; 8p. Let

L(Y pjHq; n
p(m);m) be the predictive density for group p, under the assumption that

there are q break points, with np(m) observations in each group, for ordering m and

let L(Y jHq; n
p(m);m) =

Qq+1
p=1 L(Y

pjHq; n
p(m);m) be the total predictive density for the

sample under the assumption that there are q break points. De�ne the following quanti-

ties:

� L+(Y jHq; n
p(m);m) = supi2[h1(p);h2(p)] L(Y jHq; n

p(m);m),

� Ly(Y jHq; n
p;m) = supm2[1;N!] L

+(Y jHq; n
p(m);m),

� LAq(Y jHq; n
p;m) =

Ph2(p)

i=h1(p)
�pi L(Y jHq; n

p(m);m),

where �pi is the prior probability that, for group p, there is a break at i = h1(p); : : : ; h2(p)

where h1(p) � 1; h2(p) � np(m). The �rst expression gives the maximized value of the

predictive density with respect to the location of break points for each q; the second, the

maximized value of the predictive density, once the location of the break point and the

ordering of the data are chosen optimally. The last expression gives the average predictive

density under the assumption that there are q breaks. Here the average is calculated over

all possible locations of the break points, using the prior probability that there is a break

point in each location as weight. In general, unless there are compelling reasons not to do

so, ignorance about the location of the break points leads us to assume that �
p
i is uniform

over each p.

To examine the hypothesis that the dynamics of the cross section are heterogenous

one can use either a posterior odds (PO) ratio, a Wilks likelihood ratio (WL) criteria (see

e.g. Efron (1996)) or the modi�ed likelihood ratio (ML) of Hansen (1997a). I consider

�rst the null hypothesis that there are no break points against the alternative that there

are at most Q breaks and then, if the alternative is more likely, sequentially test a series

of hypotheses where the null is that there are q� 1 break points and the alternative that
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there are q break points, q = 1; : : : Q. Given an ordering m, the three statistics for the

�rst hypothesis are:

PO(m) =
�0L(Y jH0)

P
Q

q=1 �qL
Aq(Y jHq; np;m)

(7)

WL(m) = �2 � log(
L+(Y jHQ; n

p;m)

L(Y jH0)
) (8)

ML(m) = j�wj
�1 � (L(Y jH0) � L+(Y jHQ; n

p;m)) (9)

where �0 is the prior probability that there are no breaks and �q is the prior probability

that there are q breaks. H0 is preferred to H1 when PO(m) > 1; rejected when WL(m)
exceeds an asymptotic con�dence level obtained from a �2(Qk) random variable or ML(m)

exceeds the asymptotic con�dence level for the distribution tabulated by Hansen. The

statistics for the hypotheses that there are q � 1 vs. q breaks in the cross section are:

PO(m; q � 1) =
�q�1L

A(q�1)(Y jHq�1; n
p(m);m)

�qLA(q)(Y jHq; np(m);m)
(10)

WL(m; q � 1) = �2 � log(
L+(Y jHq; n

p(m);m)

L+(Y jHq�1; np(m);m)
(11)

ML(m; q � 1) = j�wj
�1 � (L+(Y jHq�1; n

p;m)� L+(Y jHq; n
p;m)) (12)

Similarly, q breaks are preferred when PO(m; q � 1) < 1; the hypothesis of q � 1 breaks

rejected whenWL(m; q�1) exceeds an asymptotic con�dence level obtained from a �2(k)
random variable or when ML(m,q-1) exceeds the tabulated values. We can also test the

null hypothesis that there are q break points at particular locations against the alternative

that there is a further break point at a particular location i using a posterior odds ratio

of the form:

PO(m; q � 1�) =
�q�1 L

+(Y jHq�1; n
p(m);m)

�q �
p

i
L+(Y jHq; np(m);m)

(13)

Note that when �q = �q+1 = 0:5 (13) corresponds to the PIC criteria of Phillips and
Ploberger (1994).

To put the testing problem in an alternative perspective, one can ask what is the prior

probability on each of the null hypotheses one must entertain so that his/her beliefs will

not be overturned by the data. For example, it may be of interest to know how much

con�dence one should have on the hypothesis that the sample is homogeneous so that a

overall exchangeable prior is su�cient to characterize the data. This prior probability,

which I call �̂ can be found for any of the hypotheses considered by setting PO in (7)-

(10)-(13) equal to 1 and solving the three equations for �̂0; �̂q; �̂q, respectively.

The testing procedure I have described leaves the value of Q unspeci�ed. Following

Hartigan (1975), I suggest to select Q using the rule of thumb Q <<
q
(N=2).
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To �nd the location of the break point, given that there are q breaks, I assign

units to groups so as to provide the highest total predictive density, i.e. I compute

L+(Y jHq; n
p;m). Since there are m possible permutations of the cross section over which

to search for clustering I take the optimal permutation rule of units in the cross section to

be the one which achieves Ly(Y jHq; n
p;m). Hence, given Q and q, the criteria to optimally

classify units in groups is:

sup
m

sup
i

L(Y jHq; n
p(m);m) (14)

Bai (1997) shows that proceeding sequentially in testing for breaks, i.e. test �rst for

one break against no breaks; then conditional on the results of the �rst test, test for

the existence of one break in each of the two subsamples and so on, produces consistent

estimates of the number and the location of the breaks. However, when there are multiple

groups and one tests for the presence of two groups only, the estimated break point is

consistent for any of the existing break points and its location depends on which of the

breaks is \stronger". If this is the case Bai suggests to re�ne the estimate of the break

points. That is, if two breaks are identi�ed at i1 and i2, it is convenient to reestimated i1
over [1; i2] and i2 or [i1; N ]. Each re�ned estimator of the location of the break has then

the same properties as the estimator obtained in the case the sample has a single point.

The major stumbling block to the application of the procedure I have described is the

dimensionality of the maximization problem. When no information is available on the

ordering of the units in the cross section, it becomes imperative to calculate the predictive

density for N! ordering. Clearly, when N is moderately large, this is an impossible task

given existing computer technology. However, this is not a binding constraint for many

applications since economic theory typically suggests to researchers which orderings should

be tried and this considerably reduce the computational complexity of the problem. Note

also that, even in the case economic theory is silent and one engages in an unstructured

search, the maximization of (14) requires a considerably smaller number of evaluation

than N!, since many ordering are equivalent from the point of view of the predictive

density. That is, once a particular grouping is found, searching for groups can be shwredly

conducted by reassigning units across groups around this local maxima.

An example may clarify the issue. Suppose N=4 so that we have a total of 24 possible

ordering to examine. Suppose we have started with the ordering 1234 and found two

groups: 1 and 234. Then all permutations of 234 with unit 1 coming ahead, i.e. 1243, 1342,

etc., need not to considered as they give the same predictive density (see the appendix

for a con�rmation of this result in a Monte Carlo context). Similarly permutations which

leave unit 1 last need not to be tried, i.e. 2341, 2431, etc. This �rst pass reduces the

number of ordering to be examined to 13. But this is not the end. By trying another

ordering, say 4213, and �nding, for example, two groups: 42 and 13, we can further

eliminate all the ordering which simply consist of permutations of the elements of each
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group, i.e. 4132, 2341, etc.. It is easy to verify that once four carefully selected ordering

have been tried and, say, two groups found in each trial, we have exhausted all possible

combinations, as far as the predictive density is concerned. The example is rigged so that

at each stage we �nd two groups. When this is not the case, the number of ordering to be

examined is larger, but it does not exceed hN where h is the maximum number of breaks

found with any of the permutation.

3 Inference

Once the \best" ordering of the units in the cross section, the number of break points
and their locations have been determined, I will be interested in estimating the unknown
matrix �u and the hyperparameters contained in the vector �0 and in the matrix �E.
Let ! = [�0

0; vec(�E)
0; vec(�u)

0] be the vector of parameters of the model. The predictive

density Ly can now be used as a function of !, for �xed Y , and maximized to construct the

best possible �t of the model to the data. Maximizing Ly(!jY;Hq; n
p(m);m) with respect

to ! yields the so-called ML-type II estimator for the ! vector (see Berger (1985)) which

is the starting point for obtaining posterior estimates of the coe�cients of the dynamic

model for each individual unit.

There are several ways to obtain estimates of ! under the assumption that the errors

in (1) � (2) are normally distributed, or under the more general assumption that the

errors are drawn from a distribution in the exponential family (see e.g. Efron (1996)).

For, example, if the u's are normally distributed, the vector ! can be estimated as (see

Maddala (1991)):

�̂p =
1

np(m)

np(m)X

j=1

�
j

ols (15)

�̂p =
1

np(m)� 1

np(m)X

j=1

(�j
ols � �̂p)(�j

ols � �̂p)0 �
1

np(m)

np(m)X

i=j

(xjx
0

j)
�1�̂2j (16)

�̂2j =
1

T � k
(y0jyj � y0jxj�

j
ols) (17)

where p = 1; : : : ; q + 1; i = 1; : : : ; N ; xj is the matrix of regressors and yj the vector of

dependent variables for unit j in the panel and �
j
ols is the OLS estimator of �j obtained

using only the information for unit j.

Given these estimates for the hyperparameters, one can construct Empirical Bayes

(EB) posterior point estimates for the � vector by plugging-in estimated values in standard

formulas, i.e.:

�̂ = (X 0�̂�1
u X + �̂�1

E )�1(X 0�̂�1
u Y + �̂�1

E A�̂0) (18)
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Alternatively, Smith (1973) shows that, under normality of the u's and the �'s and

after imposing a di�use prior on the !, it is possible to jointly estimate ! and the posterior

mean of � as follows:

�̂p =
1

np(m)

np(m)X

j=1

��

j (19)

�̂p =
1

np(m)� k � 1
[R+

np(m)X

j=1

(��

j � �̂p)(��

j � �̂p)0] (20)

�̂2
j =

1

T + 2
(yj � xj�

�

j )
0(yj � xj�

�

j ) (21)

��

j = (
1

�̂2
j

x0jxj + �̂�1
p )�1(

1

�̂2j
x0jxj�

j
ols + �̂�1

p A0�̂
p) (22)

where p = 1; : : : ; q + 1; i = 1; : : : ; N ; j = 1; : : : ; np(m); R is a diagonal matrix with

small positive entries used here as in ridge-like estimators to insure that estimates of the

dispersion matrix for each group are positive de�nite.

Note that while the �rst approach only requires OLS estimates for each unit, so that

posterior estimates can be computed in two steps, in the second approach estimates of

the prior parameters and of the posterior mean of � are obtained jointly using an iterative

approach.

It is typically the case that the normal posterior distribution whose mean is given

in (18) or in (22) has a covariance matrix which underestimates the covariance matrix

obtained from a fully hierarchical Bayes approach. This is because no allowance is made

for the fact that the hyperparameters have been estimated and that the number of units in

each group may be small. In this situation it is typical to correct the posterior distribution

to eliminate the bias in the con�dence intervals for � by either explicitly taking the

uncertainty in the estimates of �E and �0 into account or by bootstrapping con�dence
intervals directly and taking the conditional mean of the empirical distribution as the
relevant con�dence interval (see e.g. Morris (1983) or Carlin and Gelfand (1990)). In

many applications, among which the one presented here, researchers are not necessarily

interested in the spread of the posterior distribution of �'s but rather they may want to

study functions of the posterior mean of �. In this case, no correction is necessary and

EB estimates in (18) or (22) provide reliable point estimates (see Berger (1985)).

3.1 A comparison with the existing literature

As mentioned in the introduction, our testing-classi�cation-estimation approach share

features with existing procedures and improves over them in some dimensions.
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For example, one advantage of the procedure over the regression-tree analysis of

Durlauf and Johnson (1995) is that heterogeneity within groups is allowed while their

procedure makes the extreme assumption that all the heterogeneities disappear once one

sorts units into groups. In other words, their estimates represent within group averages of

the underlying individual coe�cients. On the other hand, their approach allows to look

for breaks in more than one dimension at the time, while this is somewhat cumbersome

in the approach presented here. Nevertheless, as we will see in section 5, it is possible

to combine information about breaks obtained ordering units in di�erent ways at the

inferential stage.

Relative to the graphical techniques adopted by Quah (1996a) and (1996b), the ap-

proach allows formal veri�cation of the existence of groups in the cross section. Quah's

approach, on the other hand, requires less stringent assumptions than I am making here

(e.g. the coe�cients of the dynamic model could be time varying in his setup).

The procedure is also related to the one of Paap and Van Dijk (1994) who use a

mixture of normal densities to characterize the multimodal distribution present in their

data and assign units to groups using a decision-making Bayesian rule. The analysis

conducted here under normality can be interpreted as attempting to �t a mixture of Q

normal distributions to the data, where both Q and the number of units in each group

is unknown. Desdoigts (1998) uses a non-parametric (projection pursuit) method to �nd

a set of economic characteristics which allow him to sort units into groups. However, he

groups units in the cross section using di�erences in the regressors of model (1), while

here di�erences across groups have to do with the parameters of the distribution of the

coe�cients of the dynamic model, not with its regressors.

Finally, the approach is also related to standard clustering and classi�cation tech-

niques (see e.g. Mardia, Kent and Bibby (1980)). Contrary to these techniques I use a

regression framework with serially correlated data; I allow groups to have di�erent covari-

ance matrices; I do not restrict a-priori the number of groups (only the maximum number

of grouping is chosen a-priori) and I use the predictive density, as opposed to the within

group variance, as classi�cation device.

I have run a Monte Carlo exercise to examine the ability of the procedure to detect

breaks in the cross sectional dimension of a panel and of unbiasedly estimating the hyper-

parameters with simple DGPs. The results are presented in some details in the Appendix.

It turns out that, if the ordering is correctly speci�ed, the predictive density approach I

have suggested is able to correctly detect the number and the location of breaks when

there are simple or multiple breaks in the data. However, the posterior odds ratio ap-

pears to be slightly biased downward when no heterogeneities are present. This suggests

that a conservative strategy to avoid the proliferation of groups is to choose a prior odds

to slightly favor the null of no breaks even in situations where no prior information is

available. When the ordering is unknown, the maximization of the predictive density
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over permutations recovers the best ordering of units in the cross section, and once the

ordering is found, the number and the location of the breaks is correctly identi�ed. Esti-

mates of the hyperparameters are biased when the size of the time series is small: mean

parameters are downward biased and variance parameters upward biased. When T � 30

most of these biases disappear.

4 Linking the Econometric Approach and Growth

Theory

While I have argued that without any prior information about the ordering of the units,
a brute force approach to the maximization of the predictive density is feasible, even
though computationally demanding when N is large, it is also the case that economic

theory provides information that restricts the number of interesting permutations one

should try. It does so by providing indicators which may determine which unit will

belong to which group.

For the case of convergence clubs, existing growth theory has suggested many mecha-

nisms that may lead to such an outcome. Galor (1996) provides a thoughtful and compact

summary of the major implications of various theoretical models, stressing the economic

indicators which may produce club convergence. To provide the necessary link between

the theory and the implementation of the proposed approach and some guidelines to

interpret the results, I next brie
y summarize the causes of clubs convergence and the

indicators which can be useful to order units in the cross sectional dimension of the panel.

Basic neoclassical growth models, with production functions exhibiting decreasing re-

turns to scale to the capital-labor ratio, exogenous population growth and �xed saving

rate may generate convergence clubs in, at least, two circumstances: when saving rates
out of wage and interest income di�er with the �rst being larger; when the economy

features heterogenous agents. The �rst assumption may be a consequence of heteroge-

nous factor endowment across individuals and life-cycle considerations, while the second
one, for example, is a standard feature of OG models. In both cases, multiplicity of sta-

tionary equilibria occurs and the distribution of initial income per-capita determines the

asymptotic club to which a particular unit will belong.

The incorporation of empirically important elements such as human capital or fertil-

ity in the basic neoclassical growth model, along with some type of market imperfections

(externalities, imperfectly competitive markets, non-convexities, and so on) produces ad-

ditional channels which stregthen the possibility of club convergence. For example, social

increasing returns with respect to human capital accumulation or capital market im-
perfections together with non-convexities in the production of human capital generate

convergence clubs. In this case units which are similar in their characteristics and in their
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initial level of income may cluster around di�erent steady state equilibria because they

have di�erent endowments of human capital (see e.g. Azariadis and Drazen (1990)). In

some cases, it may be the within unit distribution of human capital which determines the

steady state around which units may cluster (see Galor and Zeira (1993)). The within

unit distribution of initial income may also be the reason for why units converge to di�er-

ent clubs: capital market imperfections together with some �xed cost in production may

generate this outcome (see Quah (1996b)). A model with endogenous fertility, as in Barro

and Becker (1989), can also produce convergence clubs. In this case the initial conditions

with respect to number of children and the level of human capital dictate the steady state

equilibria in which a unit will settle. In other versions of a such a model, it is the initial

level of distribution of income which determines the distribution of the steady state level
of output per-capita and fertility rates.

Finally, Quah (1996a) suggests that club convergence may due to informational exter-

nalities which may occur at either state or neighborhood level. That is, units which are

either members of the same nation, share some borders, or belong to geographically ho-

mogenous areas, may tend to cluster together because information 
ows more easily across

units with these characteristics. Hence the geographical location of a unit determines the

convergence club it will join. This local externality hypothesis substantially di�ers from

those which use increasing returns to scale in some factor of production and may generate

converge clubs even under standard assumptions about preferences and technologies.

To summarize, the theoretical literature has provided at least four di�erent indicators

which may be used to order units along the cross section: the initial level of income, the

initial level of human capital; the initial distribution of income per-capita and human

capital within the unit. Furthermore, geographical indicators can be used to scale per-

capita income data and/or to organize units in the cross section.

5 Are There Convergence Clubs?

In this section I study whether convergence clubs exist in income per-capita with two

goals in mind. First, I would like to examine the compatibility of income per-capita

data with modern growth theory with multiple steady states 1. Second, I would like to

better understand the statistical properties of income per-capita data. In particular, I

am interested in examining what kind of heterogeneities the data displays, whether the

average adjustment properties to the steady state and the average steady state are group

dependent, and whether di�erent groups display di�erence persistence of inequalities,

in the sense that the relative ranking in the initial distribution is more important in

1What I examine here is a somewhat strong version of this hypothesis. A weaker version would predict

the existence of convergence clubs in the distribution of growth rates of income per capita.
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determining the relative ranking in the steady state distribution for some groups than

others. I study these issues using two di�erent data sets: European regional income

per-capita from the Eurostat database and OECD national income per-capita from the

Summer and Heston database.

5.1 European Regional Income per-capita

The data set used in this subsection covers 144 European NUTS2 units and refers the

period 1980-1992 2. Canova and Marcet (1995) show that an AR(1) model with region

speci�c parameters captures su�ciently well the dynamics and leaves the residuals close

to a normal white noise when the data is scaled in each period by the European average.

They also show that for this data set income inequalities are persistent, in the sense
that there is very little evidence that the income of poor and rich regions will become more

similar as time progresses, and that the estimated distribution of steady states is far from

collapsing to a single point. Hence, their setup o�ers the natural ground for examining

whether there is any tendency toward clustering. For t = 1; : : : ; T; i = 1; : : : ; N I use a

model of the type

yit = �i + �iyit�1 + uit uit � N(0; �2

i ) (23)

where yit is the per-capita income of each region relative to the European average. I also

assume that �i = [�i; �i]
0 can be represented as:

�i = �p + e
p
i e

p
i � N(0;�p) (24)

Given that N=144 I allow, at most, 6 groups (i.e. Q=5). For regional data there are very

few indicators which can be used to order units according to the suggestions of recent

growth theories. For example, no indicators of the average regional human capital (or its
distribution) at the beginning of the sample is available, nor do I have regional measures
of dispersions of income per-capita. Given that the sample covers the 1980's and that I

am examining European regions belonging to EEC countries, I conjecture that di�erences

along these dimensions are unlikely to provide relevant information to group units into

convergence clubs 3.
Given these limitations, I search for clubs ordering the cross section according to:

(i) the magnitude of per-capita income relative to the European average in 1979, with

poor regions coming �rst; (ii) the magnitude of per-capita income relative to the national

2Roughly speaking the NUTS2 classi�cation corresponds to regions. NUTS1 refers to larger territorial

units (the "North", the "Centre" and the "South") while NUTS3 provides data at provincial level.
3As an informal check of this conjecture, I separatedly examined the case of regions in Italy and Spain,

for which educational data are available (see Boldrin and Canova (1998) for a description of this data). I
�nd that regional di�erences in average human capital and in the distribution of human capital are small
and typically unrelated to the time path of income per-capita in the sample.
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average in 1979, with poor regions coming �rst; (iii) the magnitude of locally scaled

income per-capita in 1979 (Mediterranean regions and Ireland are scaled by their average

and northern regions are scaled by their average), with poor regions coming �rst; (iv) the

magnitude of the average share of per-capita income relative to the European average in

the sample, with poor regions coming �rst; (v) the magnitude of the average growth rate

of per-capita income in the sample, with regions growing slower coming �rst.

The �rst ordering attempts to capture the e�ect that initial conditions may have on

the steady state distribution of income per-capita; the next two orderings try to verify

whether geographical externalities (either at country or at south-north level) may be

important to determine the position of a unit in the steady state distribution or its basin

of attraction; the last two classi�cations attempt to study the importance of threshold
externalities, here proxied by the size of the share of income per-capita in Europe or its
growth rate. Note that if geographical externalities are important, any tendency toward

convergence clubs that may appear with ordering (i), should be weakened or disappear

with ordering (ii) or (iii).

Among these �ve orderings, I �nd that the �rst one maximizes the predictive density

of the data. Given this ordering I identify three break points, corresponding to units

15, 23 and 120, and, consequently, four groups in the data. Within the �rst 15 units

there are ten regions of Greece, four of Portugal and one of Spain (Extremadura); in the

second group there are four regions of Greece, three of Spain and one of Italy (Calabria);

�nally, the last group includes regions from nine di�erent countries but the majority are

German (9) and Northern Italian (5). Note that the fourth and �fth orderings produce 4

and 3 groups, whose composition is very similar to these ones. Hence, the splitting that

the algorithm produces is highly suggestive of the fact that European regions cluster into

homogeneous groups along the poor-rich, south-north dimensions.

In �gure 1 I provide graphical evidence of the existence of groups with the �rst ordering

by plotting the predictive density as a function of the location of the break point, together

with the predictive density obtained when there are no breaks (the dotted line). The �rst
panel refers to the full sample, the next two panels to the two subsamples obtained
separating units according to the �rst optimal splitting. To interpret the graphs note

that the entries on the horizontal axis gives the location of the break and those on the

vertical axis the value of the predictive density. Therefore, entry 23 on the horizontal axis

in the �rst panel indicates that assigning units 1-23 to the �rst group and units 24-144 in

the second gives a value of L+ of 4943 (as compared to the value of 4863 when no breaks

are allowed) Similarly, the second panel indicates the need of further splitting group 1 in

two subgroups (1-15 and 16-23) and this split gives a value of L+ of 679 (as compared to

the value of 670 when no breaks are allowed). Finally, splitting group 2 in two subgroups
(24-120, 121-144) gives a value for L+ of 4325 (as compared to a value of 4272 when no

breaks are allowed).
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Table 1 presents the results of testing various hypotheses using the posterior odds

ratio. Also reported are the prior odds ratio for each of the hypotheses of interest and �̂,

the minimum value of the prior probability on the null needed so that the data will not

reject it. Three features of the table should be noted. First, the overall �t of a model with

three breaks is signi�cantly better than the one without breaks: the predictive density is

substantially higher and a PO ratio favors the hypothesis of heterogeneities. Second, in

going from one to three breaks, the relative improvement is nonmonotonic and, for the

third break, the posterior odds ratio does not provide enough support for the alternative

hypothesis that there are three breaks. Third, and as a consequence of the above, we

need to have progressively weaker a-priori expectations on the null as the number of

break points we are testing for increases.

While the statistical evidence in favor of three breaks is not overwhelming, economic

di�erences appear to be relevant. I present estimates of �p for the whole sample and for

each of the four selected groups in table 2. It is clear that the four groups can be identi�ed

by both the value of the intercept and of the slope of the model (23). For example, the �rst

group is characterized by very slow average persistence in relative income per-capita (low

�p) and below average mean intercept (low and negative �p). At the opposite, the last

group is characterized by higher average persistence and above average mean intercept

(high �p and positive �p). Interestingly the central group, which contains the largest

number of units, has a mean value for the persistence parameter which is higher than

that of the last group.

The within group dispersion of hyperparameter estimates, varies substantially across

groups. For example, di�erences in the persistence parameter are small in the second

group (0.04) but large in the last one (0.64). For three of the four groups the dispersion

of the persistence parameter within subgroups is substantially smaller than the dispersion

obtained by (weakly) pooling together all units with an exchangeable prior, suggesting

an overall reduction of the residual heterogeneity once groups are identi�ed. For the last

group the dispersion parameter is large, probably because the sample is small and there

are few outliers (Dutch oil producing regions). In general, it appears that the last group

is heterogeneous and requires a further subdivision. However, the procedure was unable

to locate any further break in this group. Finally, except for the second group, there is

no evidence that the dispersion of the coe�cients around the mean is negligible, stressing

the need to control for residual heterogeneities once groups are identi�ed.

To summarize the features of the posterior distribution of the �, I report three eco-

nomically interesting functions of the coe�cients of the dynamic model: a scatter plot

of speeds of adjustment to the steady state ( 1 � �̂i) against the initial condition yi0 for

each of the four groups; the mean and the dispersion of estimated steady states for each

group; and a long run mobility index.

With the scatter plots I am interested in verifying whether the magnitude of the slope
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between 1� �̂i and yi0 varies with the group and, in particular, whether units with below
average initial conditions adjust faster or slower to the steady state than units with above
average initial conditions. Recall that the standard neoclassical growth model has the
property that the speed of adjustment does not depend on the initial conditions. The
second statistic provides information on the core question of this paper, i.e. whether
the identi�ed groups do cluster around di�erent steady states. The mobility index, on
the other hand synthetically measures, given a particular position in the initial income
distribution, the likelihood of switching income classes in the long run (i.e. it measures the
likelihood of \miracles and busts"). Such an index also highlights whether inequalities
are persistent, a result which is of interest to policymakers concerned with, e.g., the
evaluation of transfer programs to underdeveloped regions. In the exercise I consider only
two classes (above and below average income at the beginning of the sample and in the
steady states) 4 and the mobility index for the two states (long-run) Markov chain is
calculated as M = 1 � p11 � p22 where pii is the estimated probability of staying in the
class where a unit starts, i = 1;2. Notice that �1 � M � 1, with values greater than
zero indicating mobility across the two classes and values less than zero supporting the
idea that there is persistence of inequalities.

Figure 2 indicates that indeed there are striking di�erences in the relationship between
speeds of adjustment and initial conditions of the four groups. While for the �rst two
groups the slope is strongly negative (estimates are 0.7-0.9), the slope for the third group
is still negative but smaller in magnitude, while the slope for the fourth group is slightly
positive even though not signi�cantly so. Notice also that there is a number of regions in
the last two groups which have speeds of adjustment which are either negative or greater
than one, indicating possible non-stationary or oscillatory posterior dynamics.

Table 3 con�rms that the identi�ed groups do constitute di�erent convergence clubs.
The means of the steady states are di�erent across groups (given equal prior odds, the
posterior probability that they are equal is negligible for every pair except the �rst two)
while the dispersion of steady states around these means varies with the group. The
economic signi�cance of these di�erences is substantial. For example, the mean steady
state of the �rst group is around 45% of the European average and the mean of the fourth
group is about 15% above the European average. Also, the steady state distribution is
far from collapsing for all but group 2 and there is a substantial reduction of the steady
state dispersion once units are appropriately grouped.

Given these results, one would like to know what are the characteristics of the units
belonging to each group. For example, one may be interested in knowing if there will
be any mobility in the steady states ranking (relative to the initial conditions) or if club
convergence occurs in a situation of immobility in the ranking. The mobility index for the

4Changing the threshold from the mean to the median do not change the qualitative features of the

results.
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whole sample, equal -0.24 , suggests a very weak tendency to transit from the position

where the units start: the tendency to transit is much stronger for units which starts

above the mean, while poor regions tend to stay uniformly poor, i.e. busts are more

probable than miracles. The four groups clearly display di�erent mobility characteristics.

In the �rst group there is a strong tendency to stay in the low income class and in the

second group there is complete immobility. The third group mirrors, with minor numerical

di�erences, the tendencies of the whole sample but 67% of the units starting above the

average end up below it in the steady state. The fourth group also shows a tendency to

slump and about 50% of the units which started above average are expected to be below

average in the steady states (curiously, most are French and German regions!).

Few interesting general economic conclusions can be drawn from the analysis. First,

the income dynamics of initially poor regions tend to be di�erent from those of the

initially rich. Second, there is very little tendency for the poor to move up in the income

distribution ladder while the initially rich may fall back into mediocrity. Third, and as a

consequence of the above, the steady state distribution of income per-capita may become

more polarized with few very rich units and the rest clustered in few groups below the

average. Fourth, the low mobility in the income distribution ladder of the majority of

poor and very rich units, con�rms the results of Canova and Marcet (1995) concerning

the persistence in inequalities in regional per-capita data.

Quah (1996a) has argued that once geographical externalities are taken into account

the tendency toward convergence clubs weakens. Does this occur in our sample of regional

data? The answer is partially positive. In Figure 3 I plot the predictive density as

a function of the location of the break when regional income per-capita is scaled by

national income per-capita and ordered according to the magnitude of the scaled initial

conditions. There is evidence of only one signi�cant break (producing two groups with

units 1-93 and 94-141), but now the hyperparameters of the two groups are more similar.

For example, the AR parameters has a mean of 0.597 in the �rst group and 0.713 in the

second. Moreover, di�erences in estimated steady states are much smaller than those

obtained when per-capita income is scaled with the European average and the dispersion

around the two steady states is substantially reduced. Hence, there is some evidence that

geographical and/or informational externalities are present: once these e�ects are taken

into account the number of clubs is smaller and the economic di�erences among them

signi�cantly reduced.

5.2 OECD National Income per-capita

Following Canova and Marcet (1995), the model used to capture the time series charac-

teristics of this data set is (23)-(24), where now N=21, time runs from 1951 to 1985 and

at most 3 groups are allowed (i.e. Q=2). Contrary to the case of regional data, useful
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information to order units in the cross section dimension of the panel is available at the

country level. Hence, I search for clubs ordering units according to: (i) the magnitude

of the per-capita GDP relative to the OECD average in 1950, with units having poor

initial conditions coming �rst, (ii) the magnitude of the average human capital in 1950,

measured as in Barro and Lee (1994), ordering units increasingly in their average endow-

ment of human capital, (iii) the dispersion of income distribution in 1950 (Gini index

from the Luxemburg Income Study), with units displaying high dispersions coming �rst;

(iv) the dispersion of the distribution of human capital in 1950, (measured as the sum

of the percentage of the population with primary and university educations using Barro

and Lee data), with units displaying high dispersions coming �rst; (v) a center-periphery

classi�cation of the world economy (G-3 �rst and then the rest), (vi) a geographically

criteria with European nations �rst and rest of the world afterward and Mediterranean

countries preceding northern European countries in the order. Note that in these lat-

ter two classi�cations income per-capita is scaled by OECD average and organized the

according to geographical and/or neighborhood dimensions 5.

When one break is allowed the maximized value of L+ for the six classi�cations is

2436, 2423, 2433, 2423, 2420 and 2415 respectively, suggesting that the predictive power

of the model is maximized when units are ordered according to the initial conditions

of income per-capita. Consistent with the results of Durlauf and Johnson (1995) the

procedure prefers initial output over literacy rates as the most useful variable to identify

breaks in the data. However, di�erences in L+ across alternative classi�cations are small

since the ordering of units in the cross section is very similar in at least four cases. That

is, countries which have low initial income conditions also have low average initial human

capital, a distribution of income with high dispersion and are geographically located in

the "South"' of the developed world.

Given this ordering of the data, the posterior odds ratio establishes the presence of

only one break in the cross sectional dimension of this panel, with a value of 0.979, given

equal prior odds on the null of one group and the alternative of two groups. In �gure 4

I plot L+ as a function of the location of the break point for the best ordering together

with the predictive density obtained in the case of no breaks (dotted line). The �rst

group contains the �ve poorest units (Turkey, Portugal, Greece, Spain and Ireland) and

the second group the rest.

Estimates of the hyperparameters for the two groups are �1 = [�0:162; 0:824] and

�2 = [0:0004; 0:958], suggesting a much faster a-priori average rate of convergence toward

5Substitution of the size of the population holding 50% of national wealth for Gini indices and the

sum of the inverse of the percentage of the population with primary and the inverse of the percentage of

population with secondary education for the percentage of the population holding primary and university

degrees does not change the results. The ordering obtained with these new indices are practically identical

to those I use.
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a pole of attraction which is below the OECD average for the countries in the �rst group.

Note that pooling the two groups together produces estimates of � of [�0:035; 0:881].

The dispersion of estimates is small but non-negligible (in particular, the dispersion of

estimates of the AR parameter is 0.02 in the �rst group and 0.05 in the second group)

suggesting the presence of measurable heterogeneities within groups. In other words, it

appeasrs that clustering is more prevalent than convergence even after optimally splitting

the sample.

The posterior characteristics of the two clubs di�er. The average posterior estimate

of the steady state for the countries in the �rst group is -0.7647 and for the countries

in the second group is 0.0498. This di�erence is statistically and economically large:

in particular, it implies that there will be a permanent discrepancy in the average per-

capita income of units in the two groups of about 60%. The dispersion of estimated

steady states around these poles of attraction is smaller than the one obtained when all

units are (weakly) pooled together. However, di�erences of about 15-20% in steady state

income per-capita in each group are still possible. Finally, the mobility characteristics of

the two groups are similar: apart for few exceptions, the ranking of units in the income

distribution changes very little over time and countries which were poor at the beginning

of the sample are still the poorest in the steady state. What is interesting about this

last observation is the fact that there is no evidence that the economic boom which took

place in Ireland in the 1990's and allowed the country to move up in the OECD income

distribution ladder was forthcoming.

In sum, in agreement with what Quah (1996b) and Durlauf and Johnson (1995) have

detected for a larger sample of countries, I �nd that clustering along the poor-rich dimen-

sion is prevalent in this data set. Moreover, countries which were initially poor were also

those having below average initial human capital, large income and educational inequali-

ties and were located in the \South" of the developed world. These initial characteristics

are very persistent and produce polarization in the steady state distribution of income.

The policy implications of these outcomes are striking: unless some major changes occur

the initially poor will remain poor forever and they will tend to cluster around a basin of

attraction which is substantially below the OECD average.

6 Conclusions

This paper describes a procedure to examine the likelihood of convergence clubs in the

distribution of income per-capita. It proposed a uni�ed approach to testing, estimation

and inference when the number of groups, the location of the breaks and the ordering of

units in the cross sectional dimension of the panel is unknown. Such an approach has

a number of applications, apart from the one considered in this paper. For example, it

could be used to examine the di�erential response of �rms to monetary policy shocks or
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the international transmission of shocks across �xed and 
exible exchange rate regimes.

In general, the simplicity of the procedure, its easiness of implementation and the good

properties it demonstrates in a simple Monte Carlo exercise make it a candidate to deal

with the issue of grouping in a number of microeconomic and macroeconomic �elds.

The procedure I suggest has its cornerstone in the predictive density of the data,

conditional on the hyperparameters of the model. The use of predictive densities has a long

tradition in Bayesian econometrics and provides a simple and appealing framework where

interesting hypotheses can be veri�ed. What is appealing about predictive densities is

that, once hypotheses concerning the number of groups present in the data are examined,

the location of the breaks, the best permutation in the data and the hyperparameters

of the model can be easily estimated by simply considering the predictive density as
function of the quantities of interest. Once the hyperparameters are selected, inference
can be conducted in a standard Empirical Bayes fashion and the properties of functions of

the posterior estimates of the coe�cients of the model can be examined once we plug-in

hyperparameters estimates in the appropriate formulas.

I search for clubs usign income per-capita data from European regions and OECD

countries. I �nd that there are heterogeneities in European regional per-capita income

and a tendency of the steady state distribution to cluster around four poles of attractions

characterized by di�erent dynamics, di�erent posterior mean steady states and di�erent

mobility features. Similarly, OECD national per-capita income data presents two conver-

gence clubs with poor countries clustering below the mean of the income distribution.

One word of warning in interpreting the results in light of theories of economic growth

is useful. The paper has demonstrated that the scaled distribution of regional and na-

tional income per-capita shows a tendency to cluster around few poles of attraction when

ordered according to the initial conditions of income per-capita and that, even within

the endogenously selected groups, level convergence is a rare phenomenon. Clearly these

results do not imply that the unscaled level of per-capita income shows these features and
neither they have anything to say about the existence of a steady state distribution of

per-capita income in levels or in growth rates. Furthermore, they do not suggest that one

type of economic theory (endogenous growth) is to be preferred to another one (exogenous

type) or viceversa, since both theories can generate outcomes which are consistent with

the �ndings of the paper.

Codes for implementing the procedure are written in RATS4.2 and are available from

the author on request.
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Appendix

In this appendix I present the results of a Monte Carlo exercise designed to examine the

properties of the testing procedure to uncover breaks and estimation approach for the hyperpa-

rameters with data displaying the same statistical properties and sample sizes similar to those

considered in section 5. For this reason I generate times series for N=144 units, each of length

T=13, and assume that the data generating process is:

yit = �i + �iyt�1 + eit (25)

�i = �1 + u1i u1i � N(0;�1) if i � 50 (26)

�i = �2 + u2i u2i � N(0;�2) if 51 � i � 144 (27)

where �i = [�i; �i]; �1 = [0:3; 0:8]; �2 = [�0:3; 0:4]; �1 = diag(0:052; 0:255); �2 = diag(0:102; 0:155),

var(eit) = 0:1 if i � 51 and var(eit) = 0:15 otherwise, and I assume that the initial conditions

satisfy: yi;0 � U [�0:10; 0:10].

On the panel of simulated data I estimate both AR(1) and AR(2) models for each unit

i = 1; : : : ; 144 and apply the testing procedure to examine whether there is a break in the cross

section using data in the order I have generated it. The posterior odds ratio, giving equal chance

to the possibility that there is one break and there are no breaks, is 0.9771 for the AR(1) and

0.9846 for the AR(2). The hypothesis that there is a further group produced a posterior odds

ratio of 1.0124 and 1.0165 for the two models, con�rming the presence of one break only. Figure

A.1 plots L+ as a function of the location of the break �i for the AR(1) model (the �rst panel)

where h11 = 10; h12 = 135. The peak is achieved at �i = 50, implying the presence of two groups

comprising units 1-50 and 51-144, and there are no other peaks within the range I explore.

Repeating the experiment 100 times, I �nd that in 100% of the cases the posterior odds ratio

reveals the presence of two groups in the cross section (with an average value of 0.9797) and the

predictive density is maximized in 75% of the time at �i = 50 (96% of the times for �i 2 [49; 51]).

The average posterior odds ratio for the hypothesis that there are three groups in the generated

data is 1.0114.

Next, I conducted three experiments: �rst, I randomized the order of the units within the

two groups before estimation is undertaken. This did not change any of the results con�rming

that, absent any information on the appropriate ordering of the data, the number of actual

permutations to be tried is substantially less than N!. Second, I reshu�ed the entire cross

section, taking the �rst 20 units of the time series and putting them last. In this case the

ordered data displays three groups with breaks at i=30 and i=124. Estimating an AR(1) model

on the data, the posterior odds ratio �nds 2 breaks, and the predictive density is maximized at
�i1 = 30 (see plot as function of �i in panel 2 of �gure A.1). The pattern displayed by the predictive

density in this case is very well known from the break point literature (see Bai (1997) or Hansen

(1997b)) and conveys information suggesting that there are three groups in the sample. In fact,

conditional on having a break at �i1 = 30, the posterior odds ratio for a second break is 0.9933

and the location of the break is �i2 = 124. Repeating this experiment 100 times I �nd that the
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average posterior odds ratio for the hypothesis of no breaks against 2 breaks is 0.991, that the

neighborhood �i1 2 [29; 31] is identi�ed as the �rst break point 80% of the times and that the

neighborhood �i2 2 [123; 125] is identi�ed as �rst break point in 12% of the cases (average PO

ratio for the hypothesis of one break is 0.992). Conditional on having a break at �i1 = 30, the

latter neighborhood is identi�ed as the second break in 80% of the cases (average PO ratio for

the hypothesis of two breaks is 0.993).

The design of this second experiment also allows to examine the power of the test when

the cross-sectional data is not properly ordered. That is, suppose that the DGP is such that

there are only two groups in the data, but an econometrician has available data ordered in a

way which may be di�erent from the correct one. Would the procedure be able to recognize

the optimal permutation of the units in the cross section, select the correct ordering with only

two groups and �nd the location of the break point? To provide an idea of the properties of

the approach in this case I assume that there is a break at unit 56 and reshu�e blocks of 28

units, so that I allow 5! combinations (120 trials) over which to search for the optimal ordering.

Figure A.2 plots L+ and the selected location of break point as a function of the permutation

m = 1; : : : 120. There is a plateau in L+, corresponding to the 12 permutations which correctly

put the �rst two blocks �rst and the next three last and for the remaining cases L+ declines

slowly. Notice also that for all permutations L+ is substantially higher than the likelihood under

the null (the dotted line in the graph). Also, the procedure correctly identi�es the location of

the break in those 12 cases when L+ is maximized.

Finally, I study the properties of the testing procedure when the cross section is homogeneous

(the parameters for the two groups are those for �1; �1 and e1). The posterior odds ratio for the

hypothesis of 0 versus 1 breaks gives a value of 1.0001 and the predictive density as a function of
�i produces a plateau with very little di�erence between the minimum and the maximum values

(see the third panel of �gure A.1). Replicating the experiment 100 times I �nd that the average

posterior odds ratio giving equal prior probabilities to the null and the alternative of two groups,

is 0.9997 with several cases giving a value greater than 1. The distribution of the break point is

practically uniform in the interval [10; 135], con�rming the results obtained with one experiment

only.

Estimates of the hyperparameters of the model are, in general, biased. In particular, the

average values across 100 experiments, in the baseline case are �1 = [0:3614; 0:6931]; �2 =

[�0:3660; 0:2682], indicating that estimates of � are downward biased and, as a consequence,

estimates of � are upward biased. This appears to be due to the small time series size of each

cross section: if I increase the sample size to T=36 (the size of the time series with OECD

country data), most of these biases disappear. The variances of all the estimated coe�cients

are also upward biased by 25-50%. Again, the bias drops to 10-15% when T=36. When there

are three groups in the cross section results are similar even though average estimates of the

hyperparameters of the third group are more biased, probably because of the small number of

units in this group. Finally, when the cross section is homogeneous, average estimates (across
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replications) are still biased but by a smaller amount (average � = [0:3816; 0:7372]) while

variances of the estimated coe�cients are practically identical to those obtained in the baseline

case.

Overall, the results indicate that the testing procedure has reasonable size and power prop-

erties against the particular alternative I consider. It also appears to be able to identify multiple

groups and the location of the breaks with su�cient precision, even when the data is not cor-

rectly ordered. However, since the posterior odds ratio appears to be slightly biased downward

when there are no heterogeneities, a conservative strategy would be to choose a critical value for

the posterior odds ratio which is slightly less than one. Alternatively, one could choose to give

to the null hypothesis a slightly higher probability to start with, say 50.5%. Also, one should be

aware that when there are multiple groups, the posterior odds ratio may be very close to one,

given equal prior odds, especially if the peaks in the predictive density are not very sharp.

When the time series size of each cross section is small, estimates of the autoregressive pa-

rameters are downward biased and averaging over the cross section does not help since estimates

of all the units are downward biased (see also Pesaran and Smith (1995)). When the size of

each cross section is greater than 30, estimates of the hyperparameters obtained by maximizing

the predictive density of the data are su�ciently precise while estimates of the dispersion of the

prior distribution are still signi�cantly biased.
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Hypotheses Location Break(s) Prior odds ratio Posterior odds ratio �̂

H0 : Q = 0 1.013 0.546 0.646

H1 : 3 � Q > 0

H0 : Q = 0 1.013 0.991 0.522

H1 : Q = 1 23

H0 : Q = 1 23 1.013 0.994 0.521

H1 : Q = 2 23, 120

H0 : Q = 2 23, 120 1.013 1.005 0.518

H1 : Q = 3 23, 120, 15

Notes: The column labelled �̂ reports the minimum prior probability on the null

needed so that the data will not overturn it. In each case the null has prior proba-

bility equal to 0.505.

Table 1: Hypotheses testing for the presence of groups

�p �2
�

�p �2
�

��;�

Overall -0.086 0.060 0.725 0.298 -0.071

Group 1 -0.598 0.102 0.251 0.155 -0.031

(units 1-15)

Group 2 -0.368 0.019 0.534 0.048 -0.042

(units 16-23)

Group 3 -0.032 0.0004 0.686 0.193 -0.008

(units 24-120)

Group 4 0.116 0.052 0.629 0.641 0.023

(units 121-144)

Notes: The table reports ML- type II estimates of the hyperparameters obtained

maximizing the predictive density of the data, viewed as function of the hyperpa-

rameters.

Table 2: Estimated values of the hyperparameters of the prior
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Table 3: Posterior Estimated Steady States

Sample Mean Dispersion

Overall -0.2712 0.6234

Group 1 -1.3171 0.3883

Group 2 -0.6369 0.0751

Group 3 -0.1390 0.1468

Group 4 0.2922 0.2308

Notes: The steady state for each region is computed as limT!1
�i�(1��i)

T+1

1��i
+�Ti yi0

where �i and �i are posterior estimates. The column named "Dispersion" reports

the standard deviation of steady states around the mean value.

Table 4: Mobility Index

Overall Group1 Group 2 Group 3 Group 4

M -0.24 -0.41 -0.50 -0.18 0.00

P11 0.83 0.91 1.00 0.85 0.00

P12 0.17 0.09 0.00 0.15 0.00

P21 0.59 0.00 0.00 0.67 0.50

P22 0.41 0.00 0.00 0.33 0.50

Notes: The M statistics is given by M = 1 � P11 � P22. P11 is the probability

that the unit starts below average and ends up below average in the steady state,

P22 is the probability that the unit starts above and ends up above average in the

steady state, P12 and P12 are the probabilities that the unit transits from a state

to the other. In the case the group is unbalanced, so that all units in the group are

initially in one income class, the statistics M is computed as M = 0:5 � Pii where

Pii is the diagonal value di�erent from zero.



Figure A.1: Simulated Data
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Figure A.2: DGP with one break
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Figure 1:European Regional Data, European Scaling
Full sample
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Figure 2: European Regional Data
Relationship Initial Conditions/Adjustement Rates

Group 1, 1980-1992

Initial Conditions

A
dj

us
tm

en
t R

at
es

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Group 2, 1980-1992

Initial Conditions

A
dj

us
tm

en
t R

at
es

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Group 3, 1980-1992

Initial Conditions
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Group 4, 1980-1992

Initial Conditions
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0



Figure 3:European Regional Data, National Scaling
Full sample
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Figure 4: OECD National Data

Full sample
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